Use the below source code at your own risk!
Get the raw code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import tensorflow as tf
def conv_layer(x, filters, stride=1):
"""Convolutional block
Args:
x (tf.Keras.Layer): Previous Keras layer
filters (int): The dimensionality of the output space (i.e. the number of output filters in the convolution).
stride (int, optional): An integer, specifying the strides of the convolution along the height and width. Defaults to 1.
Returns:
tf.Keras.Layer: The model with a convolutional block at the top.
"""
x = tf.keras.layers.Conv2D(filters, kernel_size=(3,3), strides=(stride,stride), padding='same', use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
return x
def depthwise_conv_layer(x, filters, stride=1, depth_multiplier=1):
"""Depth-wise convolutional block
Args:
x (tf.Keras.Layer): Previous Keras layer
filters (int): The dimensionality of the output space (i.e. the number of output filters in the convolution).
stride (int, optional): An integer, specifying the strides of the convolution along the height and width. Defaults to 1.
depth_multiplier (int, optional): An integer, specifying the depth_multiplier of the convolution layer. Defaults to 1.
Returns:
tf.Keras.Layer: The model with a depth-wise convolutional block at the top.
"""
x = tf.keras.layers.DepthwiseConv2D(kernel_size=(3,3), strides=(stride,stride), padding='same', depth_multiplier=depth_multiplier, use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
x = tf.keras.layers.Conv2D(filters, kernel_size=(1,1), strides=(1,1), padding='same', use_bias=False)(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
return x
def mobilenet_vitis(input_tensor=None, include_top=True, weight_path=None, return_tensor=False, classes=1000, classifier_activation="softmax", alpha=1.0, depth_multiplier=1):
"""Creates and returns the ResNet152 CNN architecture.
Args:
input_tensor: optional keras layer, like an input tensor.
include_top: whether to include the top layers or top.
weight_path: If not none, these weights will be loaded.
return_tensor: Whether to return the network as tensor or as `tf.keras.model` (if true, weights will not be loaded).
classes: By default the number of classes are 1000 (ImageNet). Only important `include_top=True`.
classifier_activation: By default softmax (ImageNet). Only important `include_top=True`.
alpha (float, optional): controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier (int, optional): The number of depthwise convolution output channels
for each input channel. Defaults to 1.
Returns:
The CNN architecture as `tf.keras.model` if `return_tensor=False`, otherwise as `tf.keras.layers`.
"""
if input_tensor is None:
input_tensor = tf.keras.layers.Input(shape=(224,224,3))
x = tf.keras.layers.ZeroPadding2D()(input_tensor)
x = conv_layer(x, int(32 * alpha), 2)
x = depthwise_conv_layer(x, int(64 * alpha), depth_multiplier=depth_multiplier)
x = tf.keras.layers.ZeroPadding2D()(x)
x = depthwise_conv_layer(x, int(128 * alpha), 2, depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(128 * alpha), depth_multiplier=depth_multiplier)
x = tf.keras.layers.ZeroPadding2D()(x)
x = depthwise_conv_layer(x, int(256 * alpha), 2, depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(256 * alpha), depth_multiplier=depth_multiplier)
x = tf.keras.layers.ZeroPadding2D()(x)
x = depthwise_conv_layer(x, int(512 * alpha), 2, depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(512 * alpha), depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(512 * alpha), depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(512 * alpha), depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(512 * alpha), depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(512 * alpha), depth_multiplier=depth_multiplier)
x = tf.keras.layers.ZeroPadding2D()(x)
x = depthwise_conv_layer(x, int(1024 * alpha), 2, depth_multiplier=depth_multiplier)
x = depthwise_conv_layer(x, int(1024 * alpha), 2, depth_multiplier=depth_multiplier)
if include_top is True:
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Flatten()(x)
x = tf.keras.layers.Dense(classes, activation=classifier_activation, name="predictions")(x)
if return_tensor:
return x
model = tf.keras.Model(input_tensor, x, name="mobilenet")
if weight_path is not None:
model.load_weights(weight_path)
return model