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Efficiency and equality of the multimodal travel
between public transit and bike-sharing accounting for

multiscale

Abstract

As a supplement to the existing public transit system, bike-sharing is consid-

ered an effective solution to the "first mile" and "last mile" of travel. While

many stakeholders believe that multimodal travel between public transit and

bike-sharing can improve urban accessibility and sustainability, few studies

have assessed the impact of bike-sharing on existing public transportation

systems in terms of efficiency and equality. This research uses three months of

mobile phone location data and about 140 million bike-sharing trips (origin-

destination, OD) data from Shenzhen, China, to analyze first mile and last

mile bike-sharing multimodal travel and measure the impact of bike-sharing

on the existing public transportation system in terms of efficiency and equal-

ity at different scales. The research finds that bike-sharing is less effective

in improving the operational efficiency of urban public transport and creates

new inequalities at both global and local scales of the urban public transport

system. Bike-sharing is only effective in tiny areas of the city and specific

modes (subway-bike-sharing) and does not benefit groups with low socioeco-

nomic levels and those living in edge areas of the city. Improving the equity

and accessibility of public transportation is a key factor towards promoting

sustainable urban development, and the analysis of this study on multimodal
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travel efficiency and inequality of bike-sharing can provide helpful insights

for future sustainable urban planning.

Keywords: Multimodal travel, Bike-sharing, Efficiency and equality, Public

transit system, Multiscale

1. Introduction

As an emerging mode of transportation, bike-sharing has garnered signif-

icant attention globally, being recognized as an eco-friendly and health-

promoting solution to mitigate traffic congestion and diminish pollution emis-

sions (Otero et al., 2018; Cerutti et al., 2019). Concurrently, bike-sharing

serves as a complementary option to public transportation, offering a prac-

tical solution to the challenges of "first mile" and "last mile" connectivity

(Shaheen and Chan, 2016).

While the popularity of bike-sharing has brought many social and environ-

mental benefits, the unbalanced distribution and low utilization rate in bike-

sharing have also caused new urban problems (Zhang et al., 2019). For

example, shared bikes are in short supply at some bus stops, while many

shared bikes occupy public space at some subway stations and obstruct the

flow of pedestrian traffic sometimes leading to accidents (e.g., involving blind

passengers). Improving the utilization rate of bike-sharing and its integration

with the existing public transport system is an important and urgent issue.

Contemporary practices and studies indicate that the advantages of bike-

sharing might be overstated (Hosford and Winters, 2018; Bauman et al.,

2017; Hoffmann, 2016; de Chardon, 2019). Various studies have shown that
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bike-sharing users are predominantly male, affluent, healthier, younger, and

well-educated, catering mainly to an already privileged demographic in urban

centers (Pellicer-Chenoll et al., 2021; Duran et al., 2018; Bauman et al.,

2017; Ricci, 2015) and primarily facilitate an already privileged population in

increasingly exclusive urban cores (Hu et al., 2022; de Chardon, 2019). What

is more, bike-sharing trips have mainly replaced walking, private cycling and

public transport, but surveys of European and American cities have found

that this substitution effect is likely to be negligible (Bauman et al., 2017;

Ricci, 2015; de Chardon, 2019). Congestion caused by bike-sharing is also

expected to reduce the efficiency of urban commuting (de Chardon et al.,

2017; Castillo-Manzano et al., 2015). Thus, the question if bike-sharing is

improving urban transport systems, especially public transport systems, in

terms of equality and efficiency remains controversial.

China has become the world’s largest bike-sharing market(Gu et al., 2019),

driven by local governments and large amounts of capital, but it has also

resulted in a massive waste of resources and a large amount of urban public

space being taken up (Sun et al., 2023; Ma et al., 2018). However, most

Chinese academics remain optimistic about bike-sharing and have focused

their research on increasing bike-sharing usage and the factors that influence

it (Gao et al., 2021; Li et al., 2020; Zhang et al., 2015). In recent years,

many local governments, such as Shanghai, Guangzhou and Shenzhen, have

introduced restrictive policies to control the unwarranted expansion of bicycle

sharing and set penalties for operators (Hu and Creutzig, 2022). The bike-

sharing market in China is becoming more orderly (Wang and Sun, 2022),

and bike-sharing usage in China continues to increase following the lifting of
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the COVID-19 lockdowns (IDTP, 2020). Nevertheless, research has shown

that the development of dockless bike-sharing projects is "mainly supply-

driven by operators rather than by user demand or triggered by government

policy" (Gu et al., 2019). Whether this private sector-driven travel mode is

equitable and efficient for everyone remains a question.

With restrictive policies in place by local governments, what impact does

bike-sharing in China have on the existing public transport system and will

it make a difference? This is an important question to be answered. Firstly,

the current mismatch between the supply and demand of shared bikes limits

the adoption of bicycle sharing by users, reduces the connectivity of different

public transportation modes, and reduces the potential for reducing urban

emissions. Secondly, the benefits of bike-sharing are controversial as well

because existing studies are based on spatial and temporal analysis at dif-

ferent scales (Li et al., 2020). Wang et al. (2022)have been implementing a

data-driven method to show that bike-sharing increases public commuting ef-

ficiency in the city center, while Wu and Kim (2020) have used data from the

United States, Canada and China concluding that bike-sharing in peripheral

urban areas lacks connectivity to public transport networks, leading to low

accessibility. Therefore, a multi-scale approach is needed to respond to the

existing controversy. What is more, knowing what factors affect the spatial

distribution imbalance of shared bicycles and the efficiency of multimodal

travel can determine the placement and planning of bike-sharing, which will

help build a sustainable transportation system and a livable city (Gallotti

and Barthelemy, 2014).

Existing studies on bike-sharing-public transit are based on the premise that
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bike-sharing makes urban public transportation more equitable and efficient

and that the benefits are homogeneous (Radzimski and Dzięcielski, 2021).

Furthermore, these studies tend to focus on specific modes of multimodal

travel, such as bike-sharing with subway feeders (Guo et al., 2021), and lack

detailed distinctions between different modes of travel. More importantly,

data limitations often make it difficult for researchers to obtain actual multi-

modal travel data, making it difficult to assess in detail the role bike-sharing

plays in existing public transportation systems.

The primary objective of this paper is to analyze whether bike-sharing can

enhance the efficiency and equality of urban public transportation. We focus

on the "first mile" and "last mile" aspects of multimodal travel involving

bike-sharing and public transit systems in Shenzhen, China. As conceptu-

alized in Fig. 1, the "first mile" refers to the segments of a journey where

a commuter uses a shared bike to reach a public transit station from their

residence or workplace, while the "last mile" pertains to the journey from the

transit station to their residence or workplace. To achieve this, we amalga-

mate two extensive datasets: a four-month record of 1.4 billion bike-sharing

trips and a three-month aggregated dataset of 769,164 jobs-housing com-

muting ODs derived from mobile phone location data. Through strict and

careful data processing, these two independent datasets are integrated to

compute the probability of multimodal travel using shared bikes within grids.

Concurrently, we employ community detection algorithms to assess the ef-

ficiency and equality of bike-sharing multimodal travel at both local and

global scales. Lastly, we leverage interpretable machine learning techniques,

specifically gradient boosted decision trees (GBDT), to delve deeper into the
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Figure 1: Research Framework. The above diagram conceptualizes bike-sharing-public
transit multimode travel, and the following diagram is the analysis flow of this study.

nonlinear threshold effects of socio-economic factors influencing bike-sharing

multimodal travel. These comprehensive approaches allow us to understand

the multifaceted impact of bike-sharing on the existing public transportation

system in terms of efficiency and equality.

The structure of this paper is outlined as follows: Section 2 provides a review

of the relevant literature. In Section 3, we introduce the data mining meth-
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ods and analytical techniques employed. Section 4 delves into the efficiency

enhancement of bike-sharing multimodal travel and examines equality across

various scales. Section 5 presents the conclusions and engages in a discussion

on the findings, followed by suggestions for future research.

2. Literature review

This section will start with the multimodal travel of bike-sharing and public

transportation, exploring their roles and impacts in cities, then delve into the

relationship between job-housing commuting and spatial multiscale effects,

and finally discuss the efficiency and equality issues of multimodal travel.

Through this series of progressive reviews, we aim to provide readers with

a comprehensive perspective to understand the role of bike-sharing in pub-

lic transportation and the research gap, and finally propose this research

approach.

2.1. Bike-sharing-public transit multimodal travel

Bike-sharing is seen as an emerging mode of transportation to solve the "first

mile" and "last mile" travel problems of urban public transportation(Yu

et al., 2021) and has become a key supplement to modern urban public

transportation systems (Cheng et al., 2021). They provide passengers with a

seamless connection, allowing them to easily travel from home/workplace to

the nearest public transportation stations, or from the public transportation

stations to their destination. This integration offers urban residents a more

convenient and efficient multimodal travel option (Ricci, 2015; Fishman et al.,
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2014). Therefore, many studies have analyzed the factors influencing the

use of shared bicycles and their connection with subway and bus systems

(Yang et al., 2018; Caggiani et al., 2020; Li et al., 2020; Guo et al., 2021).

These studies are generally based on the analysis of shared bicycle trajectory

data from individual cities, such as Montreal (Faghih-Imani et al., 2014),

Shanghai (Li et al., 2020), Seoul (Park and Sohn, 2017), Brasilia (Cerutti

et al., 2019) and Barcelona (Faghih-Imani et al., 2017). Faghih-Imani et al.

(2014, 2017) studied the effects of meteorological conditions, time of day,

bicycle infrastructure, land use, and built environment on bicycle sharing

use through mixed linear models. Most contemporary studies indicate that

built environment and land use characteristics are crucial for bicycle use

(Caulfield et al., 2017). For example, a high mix of land uses (Yang et al.,

2021), the convenience of public transportation (Guo et al., 2021; Liu et al.,

2022), and more supportive bicycle facilities (Lin et al., 2017) all promote

the use of shared bicycles.

On this basis, by coupling bike-sharing data with public transportation stops,

scholars further studied the impact of the built environment near public

transportation stops (usually within 100 to 500 meters) on shared bicycle

use and connection with public transportation (Ma et al., 2019; Guo and He,

2020; Guo et al., 2021; Liu et al., 2022), and proposed planning suggestions to

increase this bike-sharing-public transit multimodal mobility (Caggiani et al.,

2019; Saltykova et al., 2022). Studies have found that public transportation

stops located in urban commercial centers with highly mixed land use often

have more bike-sharing use (Fu et al., 2023). The above studies not only

imply that we need to pay attention to the impact of the built environment
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and land use when analyzing shared bike-sharing-public transit multimodal

travel, but also reflect the interactive relationship between the existing public

transportation system and bike-sharing (Liu et al., 2022), and have sparked

scholars’ interest in multimodal travel research between bike-sharing and

public transportation (Olafsson et al., 2016; Cheng et al., 2019; Guo et al.,

2021).

Jäppinen et al. (2013) analyzed the impact of bike-sharing on the existing

public transportation system through simulation and found that it can reduce

public transportation travel time and improve public transportation accessi-

bility. They proposed that bike-sharing should be regarded as part of urban

public transportation and emphasized the need for integration with existing

public transportation. Yang et al. (2018) found that shared bicycles can re-

duce passengers’ average travel time, improve the efficiency of urban public

transportation networks, and effectively alleviate the uneven spatial distribu-

tion of traffic flow in urban public transportation networks by constructing a

multimodal travel network. In addition, some scholars have proposed route

planning and station location models for bike-sharing to make this multi-

modal travel mode more efficient and equitable (Caggiani et al., 2020; Cheng

et al., 2019).

In empirical terms, Wang et al. (2022) used mobile phone data from Beijing

to model commuting modes and found that bike-sharing reduced commuting

time, improved workplace accessibility, and significantly reduced horizon-

tal and vertical inequalities in commuting time and workplace accessibility

at both the individual and spatial levels. Kapuku et al. (2021) predicted

the performance of multimodal travel with and without bike-sharing using
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machine learning, and by constructing a comparison of multimodal travel

with and without bike-sharing, found that bike-sharing can effectively im-

prove mobility. These studies are based on single data sources, simulating

and analyzing the impact of bike-sharing on urban commuting efficiency and

equality under ideal conditions, but these models often overlook complex ur-

ban commuting conditions, which can only be reflected by actual multimodal

travel data. Therefore, to analyze the real impact of bike-sharing multimodal

travel on public transportation commuting, data on jobs-housing commuting

needs to be combined.

2.2. Jobs-housing commuting and multiscale effects

Jobs-housing commuting accounts for a large part of urban public trans-

portation travel (Wu and Hong, 2017), and bike-sharing mainly meets users’

commuting needs for the "first mile" and "last mile" (Ricci, 2015; Chen et al.,

2022). A survey based in Shanghai, China found that after the emergence

of bike-sharing, the proportion of cyclists commuting increased significantly

from 21.9% to 30.9% (Jia and Fu, 2019), and the use of shared bicycles

is also mainly concentrated during commuting hours (morning and evening

peaks) (Li et al., 2020). Jobs-housing commuting reflects the stable daily

travel pattern in cities (Hu and Wang, 2016), so when analyzing bike-sharing-

public transit multimodal travel, special attention needs to be paid to the

jobs-housing commuting mode. However, existing empirical studies on bike-

sharing rarely consider the time and distance of jobs-housing commuting,

and commuting time and distance are core factors affecting transportation

mode choices (Redmond and Mokhtarian, 2001). Studies have found that the
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riding time (distance) range of bike-sharing users is concentrated at 2.5-10

minutes (500-2000 m) (Guo et al., 2021), but how the overall commuting

time and distance of multimodal travel affect bike-sharing use remains to

be explored. And commuting time and distance involve the core feature of

travel, which is the spatial scale issue.

Although existing literature focuses on the impact of the built environment

and mixed land use on bike-sharing use, it overlooks the spatial scale, a

factor that may have a significant impact on multimodal travel. Firstly,

the uneven spatial distribution of urban public transportation systems will

affect the adoption of multimodal travel (Yu et al., 2021), so the efficiency

and fairness of bike-sharing multimodal travel need to be analyzed from a

spatial perspective. Secondly, spatial non-stationarity means that multiscale

shared bicycles will affect public transportation at different scales (Yao and

Kim, 2022); perhaps it only improves the efficiency of public transportation

on a smaller spatial scale, such as in urban commercial centers with high

bike-sharing deployment density, but on a larger scale and for groups living

in non-core urban areas, it creates new social injustices (de Chardon, 2019).

Therefore, we need to evaluate the efficiency and equality of bike-sharing

multimodal travel from a multiscale spatial perspective.

2.3. Efficiency and equality of bike-sharing multimodal Travel

Most of the existing research on bike-sharing multimodal travel is based on

the premise that bike-sharing enhances the efficiency of the existing public

transportation system, and this gain is homogeneous in space (Wang et al.,

2020; Guo and He, 2020; Yu et al., 2021). Only a few studies have evaluated
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the efficiency and fairness of multimodal travel (Jäppinen et al., 2013; Lu

et al., 2018; Yang et al., 2018; Eren and Uz, 2020). Studies have found that

the emergence of bike-sharing can reduce the time of public transportation

commuting (Jäppinen et al., 2013) and can effectively enhance the accessi-

bility of public transportation (Lu et al., 2018; Chen et al., 2020), benefiting

more residents and improving the equality and sustainability of urban public

transportation (Ricci, 2015).

However, some scholars believe that the oversupply of bike-sharing results in

a lot of resource waste and greenhouse gas emissions (Wang and Sun, 2022),

and the congestion of public spaces caused by it also reduces the efficiency of

urban traffic operations (De Chardon et al., 2016). More importantly, some

studies show that the improvement of urban public transportation efficiency

by bike-sharing may have been exaggerated (Koglin and Mukhtar-Landgren,

2021; de Chardon, 2019; Castillo-Manzano et al., 2015; Audikana et al., 2017),

and bike-sharing largely benefit the affluent elite and central urban areas,

creating new social inequality for vulnerable groups and urban fringe areas

(Ricci, 2015; Chen et al., 2020; Eren and Uz, 2020).

This paper believes that the main reason for these conflicting views is that

existing research focuses on short-distance multmodal travel (Yang et al.,

2018) and multi-modal travel near subway stations (Chen et al., 2020; Guo

and He, 2020), without truly constructing a bike-sharing-public transit inte-

grated travel chain, and lacks multiscale comparative analysis. Therefore, the

factors found in these studies may not enhance multimodal travel. Although

the real multimodal travel situation can be restored to some extent through

traditional questionnaire survey methods (Olafsson et al., 2016), the surveyed

12



population is small, and it is not easy to restore the commuting situation of

the entire city scale.

More importantly, when measuring the efficiency and fairness of bike-sharing

multimodal travel, most studies are based on the perspective of individual

travel (Wang et al., 2022), that is, measuring the efficiency improvement

of a single travel trajectory, rather than embedding it into the entire city

commute for analysis, it is easy to get the conclusion that the efficiency im-

provement at the individual level can be ignored at the city-wide level. In

addition, the use of bike-sharing is related to the built environment and is

also affected by a series of socio-economic factors such as the income level

of the region, population density, and the number of jobs (Ricci, 2015; Chen

et al., 2020). And Fotheringham et al. (2017) found that different factors

only have an impact on specific scales. For example, Liu et al. (2023) found

that different distance thresholds from public transportation stations have

different impacts on transportation mode choices, and it is not a linear re-

lationship. This means that there are non-linear relationships and threshold

effects of factors affecting multi-modal travel at different scales (Smart and

Klein, 2018; Wu et al., 2019b). If we ignore the non-linear effects, the im-

pact of variables will be misestimated. These non-linear effects are often

unestimable by traditional spatial statistical methods. Traditional regres-

sion models are global models that can provide important information such

as variables being positively or negatively correlated and specific coefficients,

but it is difficult to provide non-linear and threshold effect information like

machine learning models, and this information is often of practical signifi-

cance for policymakers and stakeholders. Therefore, machine learning models
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have been applied in the field of urban transportation and built environment

research (Tao and Cao, 2023; Yin et al., 2023). Scholars use GBDT and XG-

Boost and other machine learning algorithms to replace traditional regression

algorithms, studying the non-linear threshold effects of the built environment

and socio-economic factors on public transportation (Tang et al., 2020; Xiao

et al., 2021; Liu et al., 2023).

In summary, the efficiency and equality issues of bike-sharing-public tran-

sit multimodal travel still need further exploration and integration. From

the built environment and mixed land use to the spatial effects of jobs-

housing commuting, to the non-linear threshold effects of socio-economic

factors, these are all issues we must face when considering the combination

of bike-sharing and public transportation. These research gaps provide us

with further research directions. In the following sections, we will elaborate

on the research approach of this study based on the content of the above

literature review.

As a supplement to the existing literature, in terms of data, this study will

use three months of mobile phone location data integrated jobs-housing com-

muting OD data and four months of bike-sharing data. Through strict and

cautious data processing methods (see sections 4.1-4.2), these two indepen-

dent data sets will be integrated to analyze the efficiency and equality issues

of bike-sharing multimodal travel in the entire city. Since the data set spans

a long time, the combination of data from the two sources can not only iden-

tify the relatively stable commuting and travel patterns in the city but also

filter out the effects of sudden events such as holidays, weather, and traffic

regulations on travel patterns. In terms of methods, considering the unequal
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spatial dependence of multimodal travel (e.g., areas with a large number

of commuters and many public transportation stops will have more people

adopting multi-modal travel), we introduced the spatial Gini index to evalu-

ate the efficiency and equality of the city’s global scale and further identified

the local scale communities of bike-sharing multimodal travel through com-

munity detection algorithms (see section 4.3). These local areas represent

communities with high frequencies of using bike-sharing multimodal travel,

trying to exclude endogenous spatial non-stationarity interference as much as

possible. Then we use the Taylor index to decompose the inequality within

and between communities, thereby gaining a multiscale understanding of how

bike-sharing affects the urban public transportation system. Finally, we em-

ploy the spatial entropy of POI as a metric for land use diversity, capturing

nuances of the built environment. By incorporating socio-economic indicators

such as housing prices and urban village areas, we leverage gradient boost-

ing decision trees (GBDT) and interpretable machine learning techniques

to discern the non-linear threshold effects of these factors on bike-sharing

multimodal travel.

3. Datasets

In this study, we harness multiple datasets to unravel the intricate role of

biKe-sharing within the public transit system of Shenzhen. At the core of

this analysis are two mobility datasets: one capturing the jobs-housing com-

muting patterns derived from mobile phone app traces and the other de-

tailing dockless bike-sharing trips sourced from a governmental API. These

datasets, representative of Shenzhen’s urban dynamics for the year 2021, are

15



further enriched by integrating Point of Interest (POI) data, offering insights

into the city’s built environment and land use patterns. Additionally, we

incorporate socioeconomic indicators, such as house prices and urban village

areas, to provide a holistic understanding of the factors influencing commut-

ing choices. Together, these datasets not only shed light on the current state

of urban mobility but also pave the way for informed urban planning and

transportation strategies.

3.1. Jobs-housing commuting data

We collected mobile phone location data for residents of Shenzhen from Ge-

Tui from April 1 to June 30, 2021 (second quarter of 2021). GeTui is a data

company aggregating anonymous location data from mobile phone apps (Ge-

Tui, 2022), offering services similar to SafeGraph in the USA. Such datasets

have been utilized in population mobility research and provide a reliable rep-

resentation of urban mobility (Chen et al., 2023). The dataset was created

based on high-resolution ( 100 m) Software Development Kit (SDK) loca-

tion data from users of more than 100 smartphone apps. It encapsulates

the jobs-housing relationships of millions of smartphone users in a Geohash6

( 1.2KM*0.6KM grid) scale origin-destination (OD) matrix format.

To address potential concerns about user privacy, it’s essential to note that

this dataset is derived from three months of user historical data to calculate

the city’s OD commuting volume. While we cannot report the exact number

of mobile users in the area due to privacy concerns, the dataset allows us to

analyze the population whose home or workplace is in the target area on the

analysis day. By tracing back the historical data of this population for 24 cy-
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cles (6 months), if more than half of the data falls within the target area, they

are considered as permanent residents of the area. We identified the resident

population of Shenzhen in 2019 as 10,218,569, in 2020 as 11,101,839, and in

2021 as 11,459,449. The latest census reported the permanent population of

Shenzhen in 2020 as 17,560,061, implying that this dataset covers between

58.19% and 65.26% of Shenzhen’s permanent population. Although the data

does not cover 100% of the resident population, this is understandable. Ac-

cording to the 2020 census, the population aged 0-14 in Shenzhen was 2.6534

million (15.11%), and those aged 60 and above were 940,700 (5.36%). These

groups are less likely to use smartphones, and even if they do, they might

not be involved in work commuting and thus might be excluded from the

jobs-housing data identification. Moreover, the sample size of this dataset is

significantly larger than traditional survey data (typically < 5%), indicating

its strong representativeness for the region.

As illustrated in Fig. A.1, the specific data aggregation method is as follows:

1) Time-segmented location reporting frequency was used to calculate weights

for the working hours (weekdays 10:00-17:00) and non-working hours (week-

days 21:00 to the next day 6:00 and non-working day periods). Based on

the frequency of location reports, weights were assigned to different hours.

The top three grids with the highest weights for both periods were identified

daily.

2) The results from the past 12 weeks were aggregated. Based on the weights

from the past 12 weeks, the weight values of each reported location were ob-

tained. The locations with the highest weight values during working and
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non-working hours were selected as potential workplaces and residences, re-

spectively. A higher score indicates a higher reliability of the identified resi-

dence and workplace.

Through the data aggregation process described above, we have success-

fully compiled commuting origin-destination (OD) data for 2613 jobs-housing

grids in Shenzhen, totaling 769,164 entries. Each entry contains details about

the number of commuters and the latitude-longitude coordinates of the OD

pair. Fig. 3 a visualizes the jobs-housing OD network, while Fig. A.2 a and

Fig. A.2 b depict the visualization of the origin and destination grids, re-

spectively. The color gradient of the grids provides insights into the number

of commuters starting from and arriving at each grid, offering a comprehen-

sive view of the spatial distribution of commuting populations throughout

the city. This dataset offers a detailed perspective on Shenzhen’s commuting

patterns and serves as a valuable resource for further analysis and research.

3.2. Socio-economic data

Building upon the jobs-housing commuting data, it’s essential to understand

the socio-economic factors that influence these commuting patterns. Com-

muters’ transportation mode choices are not only influenced by the spatial

distribution of jobs and housing but also significantly by travel costs (DeSalvo

and Huq, 1996). This choice is further moderated by individual economic sta-

tus and the availability of alternative transportation options (Fearnley et al.,

2018).

While many studies on bike-sharing have delved into urban travel costs and
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the built environment, there’s a noticeable gap in research focusing on the

socio-economic determinants. In this context, we introduce house prices and

the area of urban villages within a jobs-housing grid as proxies for an area’s

socioeconomic status. House prices serve as an indicator of the economic af-

fluence and purchasing power of residents in a given area. Conversely, urban

villages in Chinese cities, characterized by their underdeveloped infrastruc-

ture and non-modernized built environments, mirror the city’s residential

and social divisions (Guo et al., 2021). Given the dispersed nature of ur-

ban villages in Shenzhen, their area within a grid offers insights into the

socioeconomic development level of that specific grid, further enriching the

understanding of the jobs-housing commuting patterns.

3.3. Dockless bike-sharing data

Dockless shared bicycle data was obtained by calling the API of the Shen-

zhen government data open platform [https://opendata.sz.gov.cn/], and

we acquired 141,404,316 rows of data. Each row of data records the ori-

gin and destination (OD) of a shared bicycle trip, along with the start and

end times and duration. The dataset spans 122 days, from March 1 to July

1, 2021. Each row of bicycle trip information includes bicycle ID, start-

ing point coordinates, user ID, departure time, destination coordinates, and

arrival time.

Considering the primary focus of this study on the "first mile" and "last

mile" of bike-sharing trips, we believe that trips that are too short or too long

cannot be considered as part of multimodal travel. Instead, they are more

likely to represent single-mode trips using shared bicycles. This rationale
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led us to filter out trips based on certain criteria. Specifically, drawing on

previous studies (Wu et al., 2019a; Guo and He, 2020), we removed data for

trip distances up to 100 m and over 5 km. The exclusion of these trips is

grounded in the understanding that they do not typically represent the "first

mile" or "last mile" of a multimodal journey.

Furthermore, the duration of shared bicycle trips is generally short. Studies

on public bicycle systems in Melbourne, Brisbane, Washington D.C., Min-

nesota, and London have shown that trip durations typically range between

16 to 22 minutes (Chen et al., 2020). This further justifies the decision to

exclude trips with durations longer than 30 minutes. Additionally, research

on the integration of shared bicycles with public transportation in China has

found that most connections occur within a range of 500-2000 m from public

transport stops (Guo et al., 2021). Furthermore, the decision to focus on trips

between 100 meters and 5 kilometers is based on the typical commuting dis-

tances for shared bicycles. Trips shorter than 100 meters are often too brief

to represent meaningful commuting, while those longer than 5 kilometers ex-

ceed the typical "last mile" distance and may not align with the primary use

case of shared bicycles for short-distance, multimodal commuting.

3.4. POI data

We used Point of Interest (POI) data to measure the city’s built environ-

ment and land use utilization. The POIs of Shenzhen were collected from

the Gaode Map platform [https://lbs.amap.com/] for the year 2021. While

there are established methods like Corine Land Cover to measure land use

mix, the choice of POI data was driven by its timeliness, capturing the most
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recent urban changes that align with the bike-sharing dataset in 2021. Addi-

tionally, the Gaode Map platform provides a nuanced view of mixed-use with

17 distinct categories, offering a more detailed representation than broader

classifications found in other datasets. This high-resolution POI data seam-

lessly complements other datasets, ensuring consistency in the analysis. Fur-

thermore, our decision is underpinned by prior research (Yue et al., 2017;

Xia et al., 2021; Im and Choi, 2019), which have effectively employed POI

data in similar contexts. The information entropy formula we adopted offers

a robust metric for assessing land use diversity, where higher entropy values

indicate a richer mix of city functions. The formula is

poi_entropygrid = −
N∑
i=1

Pi × log2 Pi (1)

where N is the type of POIs and the value is 17, the number of POIs of

each type is A1, A2 . . . AN and the total number is A. The probability of

each type of function is Pi = Ai/A. The level of information entropy can

reflect the degree of mixing of city functions, and the higher the entropy

value, the more types of functions and the higher the degree of mixing. This

study also calculated the number of business and residential POIs within

each jobs-housing grid. Previous studies found that the above explanatory

variables correlate with human travel behavior (Liu et al., 2018), so the

variable adoption is more reasonable.
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4. Methodology

This section delineates the comprehensive methodology employed in our

study, as illustrated in Fig. 2 We commence by harnessing bike-sharing and

mobile phone data to discern multimodal travel trips. By analyzing extensive

data over an extended timeframe, we identify the nexus between bike-sharing

and public transport stations, thereby uncovering the underlying multimodal

travel dynamics. Subsequently, we introduce the Gini and Thayer indices,

elucidating how they facilitate the measurement of equality in our study.

Efficiency, another pivotal metric, is gauged by computing the time saved

through multimodal travel. To further refine our understanding, we deploy

a community detection algorithm, enabling us to discern the local scale of

multimodal travel and thereby assess efficiency and equality at both global

and local scales. Concluding this section, we delve into the realm of inter-

pretable machine learning, leveraging the prowess of LightGBM and SHAP.

This approach aids us in discerning the factors influencing the adoption of

multimodal travel, with a particular emphasis on socioeconomic determi-

nants.

Figure 2: Research Methodology Workflow.
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4.1. Identifying bike sharing - public transit multimodal travel trips

Public transit primarily serves the commuting needs of urban residents, form-

ing long-term and stable travel patterns. This study aims to explore the

supplementary role of bike-sharing in these patterns, especially in the "first

mile" and "last mile" of public transit commuting. A pivotal hypothesis of

this research is that bike-sharing trips arriving at or departing from public

transit stations(within 100m) and having undergone rigorous data filtering,

are indicative of a bike-sharing-public transit multimodal travel. Jin et al.

(2019) first regarded Uber passengers who got off within 100 meters of a pub-

lic transit station as multimodal connections. Wu et al. (2019a) pioneered

the concept of considering rides within a 100 meters radius of subway stations

as bike-sharing-subway transfer trips. Similar methodologies were employed

by Guo and He (2020), Wang et al. (2020), and Guo et al. (2021) to inves-

tigate the interplay between bike-sharing and public transit. Furthermore,

a survey by Guo et al. (2021) involving 1,167 participants from 22 subway

stations in Shenzhen, China revealed that over 95% of commuters either

parked or initiated their shared bicycle rides within 100 meters of a subway

station. Numerous studies have underscored the spatial correlation between

bike-sharing usage and public transit stations, highlighting their synergistic

relationship (Nair et al., 2013; Schimohr and Scheiner, 2021; Saltykova et al.,

2022).

Previous research directly categorized shared bicycle trips within 100 meters

of public transit stations as multimodal transport. In contrast, this research’s

approach, supported by a larger dataset and strict data processing measures,

makes the hypothesis more convincing. Admittedly, despite utilizing a vast
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dataset spanning 3 months of mobile phone data and 4 months of bike-sharing

data, we must admit that not all trips are multimodal. In reality, many trips,

such as those to nearby eateries or shops around transit stations, might not

encompass multiple modes of transport. It has always been challenging to

record the complete travel modes of humans. Most scholars use question-

naires or sensors carried by humans. The former is limited in its ability to

conduct large-scale surveys, especially across an entire city, while the latter

involves cost and privacy issues, making it difficult to apply in many stud-

ies. One advantage of big data, despite its inherent biases and inability to

definitively record multimodal trips, is its capacity to offer insights through

meticulous data processing and conditional constraints.

Therefore, to ensure that the bike-sharing data aligns with this research

theme and hypothesis, we conducted meticulous and cautious data process-

ing. Firstly, the bike-sharing dataset spans 122 days, which we believe is

sufficient to identify stable travel patterns and filter out random trips and

unexpected events such as holidays or adverse weather. The analysis is lim-

ited to the morning peak (7:00 a.m. to 9:00 a.m.) and evening peak (5:30

p.m. to 7:30 p.m.), the two main commuting periods, which matches well

with the commuting data (aggregating from mobile phone data between 9:00

p.m. and 6:00 a.m. and between 10:00 a.m. and 5:00 p.m.). Secondly,

when constructing a 100-meter buffer around public transit stations (Fig. 3

b), we assume that a shared bicycle completes a multimodal trip when it

arrives or departs from the 100-meter buffer. Drawing on previous research

on bike-sharing and public transit connections, we excluded trips that are

less than 100 meters or more than 5 kilometers, as well as trips lasting more
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than 30 minutes (Wu et al., 2019a; Guo and He, 2020). Notably, the bike-

sharing dataset contains user IDs, allowing us to distinguish consistent travel

patterns of individual users. During the data cleaning process, we only con-

sidered users who used bike-sharing services more than 20 times during peak

hours in a month, as there are an average of 20 working days in a month.

After rigorous data processing, we obtained 20,568,361 bike-sharing multi-

modal trips, accounting for approximately 15.55% of the 141,404,316 original

trips.

From the jobs-housing origin grid to the public transit stations, we recorded

the first mile of multimodal travel. From the public transit stations to the

jobs-housing destination grid, we recorded the last mile of multimodal travel.

Public transit stations are divided into bus stations and subway stations, so

we can ultimately identify eight types of multimodal travel, namely the first

mile of travel during the morning and evening peaks (bike-sharing-bus, bike-

sharing-metro) and the last mile of travel during the morning and evening

peaks (bus-bike-sharing, metro-bike-sharing).

4.2. Measuring efficiency

Leveraging Baidu Maps, one of China’s premier map navigation platforms

[https://map.baidu.com], we planned the route for multimodal travel. This

allowed us to determine the time cost for a jobs-housing OD using both the

walking-public transportation mode and the bike-sharing-public transporta-

tion mode. By comparing the two time costs, we calculated the time savings

(TS) for each jobs-housing grid, representing the efficiency gain from using

bike-sharing for multimodal commutes. The following equations depict the
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calculation of the first mile multimodal trip efficiency gain for each jobs-

housing grid:

TSi =

∑Ni

j=1 (TCWj − TCBj)

Ni

(2)

MLRi =

∑4
ε=1 countε

Ni

(3)

TTSi = TSi ×MLRi (4)

Here, TSi represents the average time saved for all commuting trajectories

originating from grid i by adopting the bike-sharing-public transit multi-

modal travel compared to the walking-public transit travel. Ni is the total

number of job-housing commuting trajectories originating from grid i. j

represents a specific job-housing OD trajectory, originating precisely within

grid i, hence the total number of j equals Ni. TCWj and TCBj respectively

represent the commuting time for trajectory j using the walking-public trans-

portation mode and the bike-sharing-public transportation mode. In Equa-

tion (3), ε represents the type of the first-mile multimodal travel, which

are the morning peak: bike-sharing-bus, bike-sharing-metro and the evening

peak: bike-sharing-bus, bike-sharing-metro, thus totaling 4 types. This for-

mula calculates the probability of adopting multimodal bike-sharing travel

for the first mile originating from grid i ( MLRi ). Finally, we obtain the

total travel time efficiency gain for grid i ( TTSi ) by multiplying TSi by

MLRi.

In this study, it’s important to note that the bike-sharing data and mobile
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phone data are sourced from two distinct datasets. We employed mobile

location data spanning from April 1 to June 30, 2021, to discern the consis-

tent commuting patterns within each jobs-housing grid, each approximately

sized at 1.2KM*0.6KM. By comparing the number of multimodal trips by

bike-sharing in each grid to the overall commuting volume, we were able

to determine the proportion of such multimodal trips for each grid. This

metric serves as an indicator, suggesting the likelihood of residents in a par-

ticular grid opting for bike-sharing as part of their multimodal commuting

routine over an extended period. The insights derived from these two com-

prehensive datasets offer a representative snapshot of bike-sharing’s role in

multimodal urban travel. Notably, this data-driven approach presents a more

cost-effective alternative to traditional methods like questionnaire surveys or

sensor-based tracking, especially when scaled to larger urban areas. Addi-

tionally, it sidesteps potential concerns related to privacy and research ethics.

4.3. Measuring equality

To assess the equality of bike-sharing multimodal trips, we employ two widely

recognized indices: the Gini index and the Thiel index.

In this study, we first calculated the Gini index of efficiency gains brought

about by multimodal trips on a global scale for each grid. This aimed to

analyze the equality of bike-sharing multimodal trips throughout the city

scale. The Gini index is given by:

G =

∑
i

∑
j |yi − yj|
2n2ȳ

(5)
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Here, ȳ is the average efficiency gains in multimodal trips for the grid. yi

and yj represent the efficiency gains of the ith and jth grids, respectively. The

term 2n2ȳ is a normalization factor, ensuring the Gini index remains between

0 (complete equality) and 1 (complete inequality).

Considering the spatial dependency of inequality in multimodal trips, we

introduced the spatial Gini index:

Gspatial =

∑
i

∑
j wi,j|yi − yj|
2n2x̄

+

∑
i

∑
j(1− wi,j)|yi − yj|

2n2x̄
(6)

In this equation, wi,j from the binary spatial weights matrix indicates the

spatial relationship between the ith and jth grids. If two grids are neighbors,

wi,j is 1; otherwise, it’s 0.

The Thiel index, a measure used to assess spatial inequality, is especially

relevant in the fields of Geographic Information Systems (GIS) and spatial

economics (Shorrocks and Wan, 2005; Novotnỳ, 2007). After obtaining the

local scale of multimodal trips through community detection, the spatial Gini

index can only measure the equality of grids located within all communities,

making it a global model. The Thiel index, however, can be decomposed into

two parts: B (Between-group inequality) and W (Within-group inequality),

allowing us to measure fairness between and within communities, analyzing

the equality of multimodal trips on a local scale.
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T =
m∑
i=1

(
yi∑m
i=1 yi

ln

[
m

yi∑m
i=1 yi

])

=

[
w∑

g=1

sg ln

(
m

mg

sg

)]
+

[
w∑

g=1

sg
∑
i∈g

si,g ln (mgsi,g)

]

= B +W

(7)

In this formula, m represents the total number of grids, and yi represents

the efficiency gain of the ith grid. The first equation of (7) calculates overall

inequality based on the concept of entropy from information theory. In the

second equation, the number of grids in community g is mg, and the total

number of multimodal trip communities is w. sg =
∑

i∈g yi∑
i yi

represents the

proportion of the total efficiency gain of community g to the overall gain,

while si,g =
yi∑
i∈g yi

represents the proportion of the efficiency gain of the ith

grid in community g to the total gain of that community. In the context

of Theil’s index, values close to 0 indicate a low level of inequality, whereas

values approaching 1 signify a high level of inequality.

4.4. Multimodal travel network community detection

Community detection algorithms in complex network analysis are designed

to group nodes in a graph such that connectivity within groups (commu-

nities) is maximized relative to cross-community connections. In a spatial

graph, nodes associated with locations naturally form regions that can be

represented by, for instance, the convex hull, alpha shapes, or simply the

centroid of the geometries associated with the nodes. The diameter or area

of the convex hull can be used to derive a spatial scale.
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The primary motivation behind applying community detection in this study

is to gain a multiscale understanding of how bike-sharing affects the urban

public transportation system. Before community detection, we analyzed the

global scale of bike-sharing multimodal travel throughout the city using the

original grid. Given the city’s public transportation system’s inherent spatial

disparities, such as the concentration of public transportation stops in city

centers and the prevalence of bike-sharing deployments, we aimed to mini-

mize the influence of these intrinsic factors. Through community detection,

our objective was to pinpoint communities characterized by a high frequency

of bike-sharing multimodal travel. This method enabled a more nuanced as-

sessment of equity both within and between these communities at a localized

scale.

We employed the fast unfolding algorithm (Blondel et al., 2008), which is

essentially a specialized clustering algorithm for network (OD) data. The al-

gorithm works by continuously optimizing modularity to discover community

structures in the network. Modularity measures how edges in the network

are concentrated within specific communities compared to a random place-

ment. By maximizing modularity, the algorithm effectively groups tightly

connected nodes into communities while ensuring sparse connections between

these communities.

Modularity is a measure used in community detection algorithms to evaluate

the quality of a division of a network into communities or clusters normal-

ized to take values in [-1, 1] (Newman, 2006). It is generally considered that

modularity between 0.3 and 0.7 indicates a more appropriate result of com-

munity division (Newman, 2004). In this study, we computed a range of 0.3
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to 0.7 for all travel networks extracted from the data. The modularity was

calculated by the formula,

Modularity =
1

2m

∑
i,j

[
wij −

kikj
2m

]
δ (ci, cj) (8)

Let δ(ci, cj) be defined by the function f(x) such that:

f(x) =

1, if ci = cj

0, if cj ̸= ci

where wij denotes the edge-weight between nodes vi and vj. The term ki

represents the cumulative edge-weights associated with node vi. The symbol

ci designates the community to which node vi belongs. Furthermore, 2m

signifies the aggregate of all edge weights present in the network.

4.5. Interpretable machine learning: LightGBM and SHAP

The application of machine learning, particularly in the realm of urban trans-

portation, has become increasingly prevalent due to its ability to capture

complex non-linear relationships and threshold effects that traditional spa-

tial statistical methods might overlook (Tang et al., 2020; Xiao et al., 2021;

Liu et al., 2023). In this study, we opted for machine learning over traditional

regression models to address potential multicollinearity issues and accommo-

date missing values, and outliers, which are often challenging for traditional

regression models. Understanding why a model makes a certain prediction is

crucial to interpret results, explain differences between models, and assess to
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what extent we understand the phenomenon under analysis. Moreover, the

Ethics Guidelines for Trustworthy AI of the EU High-Level Expert Group

on AI suggest that the behavior of AI systems should be transparent, ex-

plainable, and trustworthy. We use both LightGBM (Ke et al., 2017) and

SHAP (Lundberg and Lee, 2017) frameworks to open the black box of ma-

chine learning and analyze what factors influence bike sharing multimodal

travel.

LightGBM (Light Gradient Boosting Machine) is a gradient boosting frame-

work that is efficient and scalable. Travel behavior is complex, leading to po-

tential multicollinearity issues when introducing many independent variables.

LightGBM is particularly adept at handling large datasets and addressing

the challenges posed by multicollinearity among independent variables. The

GBDT algorithm, an integral part of LightGBM, is an iterative decision tree

algorithm that can analyze the non-linear threshold effect of different in-

fluencing factors, providing a precise reference for realistic and sustainable

traffic planning. This feature is invaluable for policymakers and stakehold-

ers, guiding decisions like deploying varying numbers of shared bikes in areas

with different housing prices to prevent resource wastage.

The GBDT algorithm, often referred to as MART (Multiple Additive Regres-

sion Trees), is an iterative decision tree algorithm (Freund et al., 1996). It

seamlessly integrates the principles of decision trees with gradient boosting

techniques. Initially, the data samples are partitioned into various subgroups

using a decision tree. Subsequently, the mean of the observations within each

subgroup serves as the prediction for those observations. This step results

in a prediction error, which the GBDT algorithm utilizes to recalibrate the
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weights of each independent variable for the subsequent rounds of classifi-

cation and prediction. An illustrative example of the GBDT algorithm is

provided below:

Algorithm 1 Gradient Boosting Decision Tree (GBDT)
1: Input: Training data {(x1, y1), (x2, y2), . . . , (xn, yn)}, number of trees T ,

learning rate η
2: Output: Final model F (x)
3: Initialize model with a constant prediction: F0(x) =

argminγ

∑n
i=1 L(yi, γ)

4: for t = 1 to T do
5: Compute the negative gradient (pseudo-residuals):
6: for i = 1 to n do
7: rit = −

[
∂L(yi,F (xi))

∂F (xi)

]
F=Ft−1

8: end for
9: Fit a decision tree to the pseudo-residuals, resulting in leaves

{Rt1, Rt2, . . . , RtJ}
10: for j = 1 to J do
11: γtj = argminγ

∑
xi∈Rtj

L(yi, Ft−1(xi) + γ)
12: end for
13: Update the model:
14: Ft(x) = Ft−1(x) + η

∑J
j=1 γtjI(x ∈ Rtj)

15: end for
16: return F (x) = FT (x)

Moreover, GBDT can generate partial dependence plots, which can be used

to assess the nonlinear relationships between variables through multivariate

analysis. It also allows for the assessment of the interaction effects between

two or more independent variables. By providing the relative importance of

the independent variables, GBDT offers insights into the significance of each

variable in planning practice.

We use SHapley Additive exPlanations (SHAP) to understand how input
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features determine the output of GBDT. SHAP is based on game theory

and estimates the contribution of each feature based on the best Shapley

value(Mangalathu et al., 2020), indicating how the presence or absence of

the feature changes the model prediction for a particular instance compared

to the average predictive value of the dataset.

5. Results

In this section, we begin by assessing the efficiency enhancements achieved

by incorporating bike-sharing into urban multimodal travel, shedding light

on both the improvements and the spatial inequities at the city scale. Tran-

sitioning to a more granular perspective, we identify and analyze specific

communities at the local scale, emphasizing areas with high bike-sharing us-

age and the disparities inherent within them. In our in-depth analysis, we

utilize advanced machine learning to uncover the nonlinear threshold effects

of key determinants, including commuting costs, socio-economic factors, and

built environment attributes, on the adoption of bike-sharing in multimodal

travel.

5.1. Efficiency and equity at the city scale

When evaluating the efficiency improvements brought about by integrating

bike-sharing into multimodal travel, it’s crucial to consider the broader, city-

wide perspective. By calculating the first and last mile total travel time

efficiency gain (TTSi) for each jobs-housing grid, we can gauge the citywide

efficiency enhancement of multimodal travel with bike-sharing. Fig. 3 c, d
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illustrates the distribution of these efficiency gains for the first and last mile,

respectively.

From a global scale, the efficiency gains introduced by bike-sharing to the

existing public transportation system appear relatively modest. These gains

are primarily concentrated in the city center, particularly in the mid-western

regions, where they can save about 1-10 minutes per multi-modal journey.

Notably, the first mile sees a more pronounced efficiency improvement than

the last mile. However, in areas farther from the city center, bike-sharing

doesn’t seem to enhance commuting efficiency significantly. This observation

underscores a broader issue of equity at the citywide scale. While certain

central areas benefit from the integration of bike-sharing, outlying regions

remain relatively underserved, highlighting an inherent spatial inequality in

the distribution of these efficiency gains.

Building on the observations of spatial inequality in the efficiency gains

brought about by bike-sharing, it’s essential to delve deeper into the met-

rics that quantify this disparity. The spatial distribution of these gains, as

previously discussed, is not uniform across the city, suggesting a pronounced

spatial inequality in the benefits of bike-sharing for urban public transporta-

tion.

To quantify this spatial inequality, we computed the spatial Gini index for

both the first and last mile TTS. The results are telling: a spatial Gini index

of 0.8996 for the first mile and 0.8750 for the last mile. Conventionally,

a Gini index exceeding 0.5 is indicative of high inequality. These values,

therefore, underscore a pronounced inequality in the efficiency improvements
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Figure 3: Commuting OD networks, public transit station buffer and multimodal travel
efficiency gains. (a) Jobs-housing commuting OD network, where 2,631 jobs-housing grids
serve as the nodes of the network, and 769,164 commuting origin-destination pairs act as
the connecting edges. The color gradient of the edges, transitioning from dark to light,
indicates the number of commuters (count), with lighter shades representing higher com-
muter counts. (b) 100-meter buffer zone of bus stations and metro stations in Shenzhen.
(c, d) Each grid’s total travel time efficiency gain, TTS (minutes), (c) denotes the TTS
from the grid to the public transit station (first mile), and (d) represents the TTS from
the public transit station to the grid (last mile).

brought about by bike-sharing on a citywide scale. This inequality is further

visualized by the near-vertical Lorenz curve depicted in Fig. 4 c, d.

Further insights into this inequality can be gleaned from the kernel density

distribution of the TTS, as shown in Fig. 4 a, b. Here, a significant clus-

tering of values around 0 is evident, with only a sparse distribution above

10. Notably, while the first mile values display a broader spread, the last

mile efficiency improvements register higher values. This distribution pat-

tern might be attributed to the strategic decisions of bike-sharing service

providers. By concentrating bike-sharing resources near public transporta-

tion stations, they potentially reduce management costs. This strategy is
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further evidenced by Appendi Fig. A.3, where it’s clear that the last mile

usage of bike-sharing significantly outpaces that of the first mile.

Figure 4: Kernel density distribution plot (a, b) with Lorenz curve(c, d) for efficiency gain
of bike-sharing multimodal travel. (a, c) illustrate bike-sharing multimodal travel for the
first mile and (b, d) illustrate multimodal travel for the last mile.

In the city-scale analysis, we observed pronounced spatial inequalities in the

efficiency improvements brought about by bike-sharing in urban public trans-

portation. However, attributing these disparities solely to bike-sharing might

be an oversimplification. External factors, such as the uneven distribution of

transportation infrastructure, can also play a significant role. For instance,

the less dense arrangement of metro and bus stops in eastern Shenzhen, as

depicted in Fig. 3 b, could inherently lead to lower efficiency gains in that re-
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gion. Such disparities in transportation infrastructure can significantly skew

the overall picture of inequality at the city-wide level.

While the global perspective provides a broad understanding, it’s essential

to delve deeper to discern the nuances of these disparities. Specifically, we

need to investigate whether similar patterns of inequality persist in localized

areas where bike-sharing is frequently integrated with other modes of trans-

portation. By focusing on these high-frequency areas, we can better isolate

the impact of bike-sharing from other potential confounding factors and gain

a clearer understanding of its role in shaping transportation equity.

In the following subsection, we will explore equity at the local scale, employ-

ing community detection algorithms to identify and analyze regions with

high bike-sharing multimodal travel usage. This granular approach will al-

low us to determine if bike-sharing inherently contributes to transportation

inequalities or if other factors are predominantly at play.

5.2. Equity at the local scale

Through the application of the community detection algorithm from com-

plex network theory, we identified mesoscale multimodal travel communities,

as illustrated in Fig. 5 . The modularity of these communities surpasses

0.85, suggesting robust intra-community connections and validating the ap-

propriateness of our community identification. The spatial distribution of

these communities aligns well with regions of high commuting demand, as

depicted in Fig. 3 a.

Notably, the spatial extent of bike-sharing-bus travel communities is consid-
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erably more expansive than that of bike-sharing-metro communities. This

trend is likely influenced by the denser distribution of bus stations compared

to metro stations. As observed in Fig. A.3, the coverage and quantity of

bike-sharing-bus multimodal travel surpass that of bike-sharing-metro. The

former spans the southwestern and central regions of Shenzhen, while the lat-

ter is primarily confined to stations in the southwest. Additionally, there’s

a pronounced central-peripheral structure within these travel communities:

the city’s core is characterized by larger, more cohesive communities, whereas

its outskirts are dotted with smaller, fragmented ones.

Given that each identified travel community represents a city region with

a high frequency of multimodal trips, they serve as ideal units for assessing

local-scale inequalities in bike-sharing-public transit integration. To quantify

these disparities, we employed Theil’s index to compute both within-group

(Theil(W)) and between-group (Theil(B)) inequalities for various multimodal

travel communities. The summation of these components provides a com-

prehensive view of local equity through Theil’s total index.

Table 1 displays the intra-community and inter-community inequalities for

the eight types of bike-sharing-public transit multimodal travel. From the

spatial Gini coefficient (Gspatial), we discern that, for both the first and last

miles, the inequality in bike-sharing-metro multimodal travel is lower than

that of bike-sharing-bus. This observation is also captured by the Theil index.

Crucially, the inequality between different travel communities is typically less

pronounced than the inequality within individual communities. Moreover,

the inter-community inequality constitutes a minor fraction of the overall

inequality, as indicated by Theil(B)share.
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Table 1: Within-group inequality and between-group inequality for eight types of multi-
modal travel communities.

Type Gspatial Theil(B) Theil(W) Theil Theil(B)share

First Mile

a B-B-M 0.77 0.399 0.783 1.182 33.8%
b B-M-M 0.669 0.193 0.626 0.819 23.5%
c B-B-E 0.783 0.384 0.856 1.24 31%
d B-M-E 0.684 0.233 0.632 0.865 27%

Last Mile

e B-B-M 0.713 0.387 0.572 0.959 40.4%
f M-B-M 0.601 0.237 0.395 0.632 37.5%
g B-B-E 0.735 0.415 0.624 1.0387 39.9%
h M-B-E 0.598 0.214 0.41 0.625 34.3%

Note: Types a-h correspond to the multimodal travel communities a-h in Figure
5. For the first mile: B-B-M is bike-sharing-bus in the morning, B-M-M is bike-
sharing-metro in the morning, B-B-E is bike-sharing-bus in the evening, and B-M-E
is bike-sharing-metro in the evening. For the last mile: B-B-M is bus-bike-sharing
in the morning, M-B-M is metro-bike-sharing in the morning, B-B-E is bus-bike-
sharing in the evening, and M-B-E is metro-bike-sharing in the evening. Gspatial
is the overall spatial Gini index. Theil(B) and Theil(W) indicate between and
within community differences, respectively. Theil represents the total index, and
Theil(B)share is the proportion of Theil(B) in the total Theil index.
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Figure 5: Eight types of multimodal travel communities. Above the red dashed line: first
mile; below: last mile. Left of the black dashed line: bike-sharing-bus; right: bike-sharing-
metro. (a, c) Morning and evening peak for first mile bike-sharing-bus. (b, d) Morning and
evening peak for first mile bike-sharing-metro. (e, g) Morning and evening peak for last
mile bus-bike-sharing. (f, h) Morning and evening peak for last mile metro-bike-sharing.

On one hand, this suggests that the communities identified through our com-

munity detection algorithm exhibit significant spatial homogeneity and com-

parability in multimodal travel patterns. On the other hand, it underscores

that even within communities with high multimodal travel frequencies, sub-

stantial inequalities persist. An exception to this trend is observed in the

last-mile metro-bike-sharing travel groups (Types f and h), where the in-

equality is less than 0.5. This indicates that bike-sharing deployments at
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metro stations effectively cater to commuters’ needs during peak hours, fa-

cilitating the last mile of their journeys. However, for all other multimodal

travel types, the inequality remains pronounced. This highlights the lim-

ited effectiveness of bike-sharing in enhancing the overall efficiency of the

urban public transportation system and underscores the emergence of new

disparities, evident at both local and global scales.

The root causes of these disparities might be attributed to the inherent spa-

tial imbalances of the existing public transportation system, the commuting

needs of urban residents in terms of jobs and housing, and the socio-economic

development across different regions. To delve deeper into the underlying rea-

sons for this observed inefficiency and inequality, a robust machine learning

approach is warranted, setting the stage for our subsequent analysis.

5.3. Nonlinear threshold effects of influencing factors

Building upon the insights from our literature review, which highlighted the

multifaceted roles of bike-sharing in urban commuting, the significance of

jobs-housing commuting, and the concerns surrounding the efficiency and

equality of multimodal travel, we sought to delve deeper into the determi-

nants of bike-sharing usage. Recognizing the potential non-linear relation-

ships and threshold effects emphasized in prior studies (Tang et al., 2020;

Xiao et al., 2021; Liu et al., 2023), we employed the Gradient Boosting Deci-

sion Trees (GBDT) model, implemented through the LightGBM framework.

We formulated two distinct models to predict bike-sharing usage for multi-

modal travel within the jobs-housing grid: one for the first mile and another
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for the last mile.

1. Commuting Cost: Drawing from the literature that emphasizes the

importance of commuting time and distance on transportation mode

choices (Redmond and Mokhtarian, 2001; Guo et al., 2021), we included

variables such as the average commuting time by public transportation

("commu_duration"), average commuting distance ("commu_distance"),

and the average distance and duration for the first/last mile by bicy-

cle ("first/last_distance" and "first/last_duration"). Additionally, we

considered the time saved when opting for car commuting over public

transportation ("cartime_save") and the time saved by using a shared

bike for the first/last mile compared to walking ("savetime").

2. Built Environment: Prior research has consistently shown that the

built environment, especially mixed land use, plays a pivotal role in in-

fluencing bike-sharing usage (Caulfield et al., 2017; Guo and He, 2020;

Chen et al., 2020). Thus, we incorporated variables like mixed land

use calculated using POI data ("poi_entropy"), the number of com-

pany POIs ("company_poi"), and the number of commercial residen-

tial POIs ("residence_poi").

3. Socio-economic Status: Recognizing the socio-economic disparities

in bike-sharing usage as highlighted in the literature (Ricci, 2015; Chen

et al., 2020; Eren and Uz, 2020), we included variables representing the

working population ("work_pop"), living population ("home_pop"),

urban village areas ("village_area"), and house prices within the jobs-

housing grid ("house_price").
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To ensure the robustness of our model, we employed a grid search to de-

termine the optimal combination of hyperparameters. The final objective

function was set to Poisson, with the evaluation function being the mean

squared error (MAE). The model’s configuration included a leaf number of

59, a maximum decision tree depth of 8 iterations, and a learning rate of

0.01. The models achieved commendable performance with the lowest MAEs

of 22.56 and 31.32, and pseudo-R2 values of 0.41 and 0.56, respectively.

Figure 6: Distribution of Shapley values for features in first mile (a) and last mile (b)
multimodal travel. Features are ranked by importance from top to bottom. Dots represent
instances of bike sharing-public transit travel, with color indicating feature value (blue:
low, red: high). The horizontal position shows the Shapley value, indicating the feature’s
contribution to multimodal travel likelihood. For clarity, dots are jittered vertically to
prevent overlap.

Fig. 6 depicts the distribution of Shapley values for the influencing factors

of multimodal travel during the first mile and the last mile. The duration

and distance of both the first and last mile travel exhibit pronounced SHAP

values, marking them as the two most pivotal predictive features. A longer

distance and time for the first/last mile segment of a commute indicate a
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higher propensity for commuters within that jobs-housing grid to opt for bike-

sharing as part of their public transportation trips. Furthermore, influencing

the choice of bike-sharing during the first mile, the number of commercial

residential POIs emerges as the third most influential feature, followed by

housing prices in the fourth position. In contrast, for the last mile, housing

prices rank seventh, with the number of working population taking the fourth

spot. This suggests that while there are similarities in the primary influencing

factors for multimodal travel during the first and last miles, there are also

distinct differences.

The interaction dependence plot for the first mile travel feature, as shown in

Fig. 7 a, c, reveals a distinct nonlinear threshold effect for both the duration

and distance of the first mile travel. Notably, when the duration of the

first mile exceeds 200 seconds and the travel distance surpasses 250 meters,

this nonlinear effect becomes pronounced. Beyond these thresholds, these

two features significantly influence the choice of bike-sharing as a mode of

transportation. This nonlinear effect is also evident in the last mile travel,

as illustrated in Fig. 8 c, d. However, a key difference is observed: the

distance threshold for the last mile is around 500 meters. This indicates that

in multimodal travel decisions, people’s sensitivity to distance varies between

the first and last miles.

The house price demonstrates a nonlinear threshold effect on the adoption

of first-mile multimodal trips. As depicted in Fig.7 b, when the house price

exceeds approximately RMB 40,000, a trend emerges: higher house prices

are associated with a higher probability of first-mile multimodal trip adop-

tion. This effect is also evident for last-mile trips, as indicated in Fig.A.7
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Figure 7: First mile travel feature interaction dependence plot. (a) The average distance
and duration for the first mile. (b) Housing prices (in yuan per square meter). (c) The
average duration for the first mile. (d) Urban village areas (in square meters).

a. Moreover, the size of urban villages has an influence on the adoption of

both first and last-mile multimodal trips. Specifically, larger urban villages

are associated with a decreased likelihood of adopting these trips, as shown

in Fig.7 d for the first mile and Fig.A.7 c for the last mile.

These observed effects, especially concerning house prices and urban village

sizes, suggest that, compared to groups with higher socioeconomic status,

those with lower socioeconomic status are less likely to improve their com-

muting efficiency through bike-sharing. Furthermore, bike-sharing services
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Figure 8: Last mile travel feature interaction dependence plot. (a) Number of working
population. (b) The average commuting time by public transportation. (c) The average
duration for the last mile. (d) The average distance and duration for the first mile.

seem to be more prevalent in affluent urban areas, such as city centers.

In the last mile model, while the house price stands out as the 4th most

influential feature in the first mile, the number of the working population

takes precedence as a significant predictor. A plausible interpretation for this

is that areas with a larger working population naturally have more amenities

or infrastructure supporting bike-sharing, leading to a higher likelihood of

people using bike-sharing for their last mile trips. However, this observation

should be considered in conjunction with other factors that might influence
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this trend. It’s essential to understand that these factors often interact with

each other. As depicted in Fig.8 a, the interaction dependence plot between

the working population and the average duration for the last mile reveals that

regions with longer last mile commuting time and a larger working population

have a higher probability of bike-sharing adoption.

Moreover, as shown in Fig.8 b, as the commuting time to a specific location

lengthens, the likelihood of opting for multimodal travel diminishes. This in-

dicates that those with extended commutes might not find the amalgamation

of public transportation and bike-sharing as beneficial as those with shorter

journeys. This trend is consistent for both the first and last mile, as seen in

Fig.A.6 b. Notably, when the commuting duration surpasses a threshold of

6000 seconds (approximately 1.7 hours), the interactive effect between com-

muting time and the duration of the first/last mile vanishes. This suggests

that the previously observed nonlinear threshold effect for the first/last mile

duration doesn’t encourage those with exceedingly long commutes to adopt

bike-sharing. Given that individuals residing on the city’s outskirts face

longer commuting durations, this might further underscore that bike-sharing

predominantly benefits those in urban centers.

Additionally, a similar nonlinear effect is observed with land use mix. When

this mix nears a value of 3, areas with a higher mix show a greater propen-

sity for bike-sharing. Whether considering commute costs, socio-economic

factors, or built environment characteristics, the machine learning models

reveal these nonlinear thresholds and interaction effects, providing valuable

insights for city planners and stakeholders.
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6. Conclusion and Discussion

This research, harnessing mobile phone and bike-sharing big data, pinpointed

eight types of bike-sharing-public transit multimodal travel. The findings

indicate that, although bike-sharing does augment the existing public tran-

sit system, its potency in amplifying the efficiency of multimodal travel is

largely confined to a narrow scope of areas. Noteworthy inequalities emerge

in this multimodal travel both on global and local urban scales. The re-

sults of this study challenge the homogeneous assumptions of the existing

literature (Wang et al., 2020; Guo and He, 2020; Yu et al., 2021), which pre-

supposes that bike-sharing universally enhances the efficiency of the existing

public transit system and that this enhancement is spatially homogeneous.

Such assumptions likely overstate the impact of bike-sharing on urban public

transportation.

Within city centers and in specific configurations, such as the metro-bike-

sharing for last-mile solutions, bike-sharing can enhance both efficiency and

equity. However, it doesn’t seem to benefit those from lower socioeconomic

backgrounds or those residing in the city’s outskirts. Concurrent research

from North America, Europe, and Australia reinforces this assertion, suggest-

ing that contemporary bike-sharing systems predominantly serve the trans-

portation needs of an increasingly privileged demographic entrenched within

the urban center (Ricci, 2015; Fishman et al., 2014; de Chardon, 2019).

The primary factors influencing bike-sharing-public transit multimodal travel

are the first/last mile distance and duration. This suggests that the decision

to use public transportation for multimodal travel is tightly linked to how
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accessible transit stations are within an individual’s neighborhood. Existing

research has also recognized the significance of station proximity and layout in

influencing bike-sharing usage (Guo and He, 2020; Guo et al., 2021; Willberg

et al., 2021). Additionally, housing prices reflecting socioeconomic status

and the area of urban villages also play pivotal roles in determining the

utilization of bike-sharing in multimodal travel. Studies by Guo et al. (2021)

and others support the finding that the likelihood of using bike-sharing is

lower in urban villages. Insights derived from machine learning models reveal

nonlinear threshold effects of commuting costs, socioeconomic factors, and

the built environment on multimodal travel. Such insights can guide planners

and operators to give particular consideration to connections with existing

public transit systems during placement and allocation.

This research is characterized by two primary limitations. Firstly, the foun-

dational data stems from China, which prompts the question: To what extent

can the conclusions drawn here be extrapolated to other nations with bike-

sharing systems? The bike-sharing landscape in China is distinct, marked by

its substantial private investments and intense competition. Introduced in

2016, the bike-sharing phenomenon in China witnessed an explosive growth,

with the number of shared bicycles escalating from 2 million in 2017 to a

staggering 23 million. By 2020, the market was inundated with over 30 com-

peting bike-sharing brands (Hu and Creutzig, 2022). This rapid expansion,

coupled with lenient public policies and subpar coordination, precipitated a

significant resource wastage, infamously known as the "bike-sharing grave-

yard." Furthermore, it raised questions about the actual efficiency of urban

transportation (Wang and Sun, 2022). Drawing parallels, case studies from
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Europe and North America reflect a pattern of low bike-sharing utilization

rates, with a tendency to cater predominantly to a privileged demographic,

thereby fostering social exclusion (de Chardon, 2019). Reacting to these

challenges, local governments in China have now pivoted to enforcing re-

strictive measures to temper the unchecked competition among bike-sharing

enterprises. This shift underscores the necessity for in-depth research: How

does a service, largely backed by private capital, interface with and influence

established public transportation systems? It’s worth noting that the aim

of this paper isn’t to castigate this nascent transportation modality but to

furnish valuable insights for urban planners and stakeholders, and in doing

so, pave the way for subsequent research endeavors.

The second limitation revolves around our methodology. We anchored our

analysis on two disparate big data sets to determine the probability of multi-

modal travel. This approach, while expansive, inherently challenges the ver-

ifiability of the resultant multimodal travel data. To mitigate this, we delved

deep, sifting through extensive timeframes and billions of data points, forti-

fied by a rigorous and thorough data processing protocol. Our analytical lens,

however, was primarily trained on urban demographics exhibiting stable job-

housing commute patterns. This meant sidelining segments without regular

commuting behaviors, like those without fixed jobs. Such a focus inadver-

tently limits the breadth of our assessment, restricting our understanding of

multimodal commuting efficiency and equity across all urban strata. Yet, a

silver lining emerges. Preliminary findings, underpinned by machine learn-

ing algorithms, resonate with extant literature. This congruence provides a

modicum of assurance about the credibility of the multimodal travel data
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we’ve unearthed.

In conclusion, the cornerstone of sustainable urban development hinges on

amplifying the equity and accessibility of public transportation. The in-

sights gleaned from our study on bike-sharing’s multimodal travel inequal-

ity shed invaluable light on future sustainable urban planning trajectories.

Governments stand to enhance the spatial equity of bike-sharing through ju-

dicious policies, ensuring this transport modality penetrates even the more

marginalized urban pockets and extends its reach to the economically disad-

vantaged. Moreover, the integration of bike-sharing initiatives should harmo-

niously dovetail with prevailing public transport systems. Blind, unchecked

investments not only risk monumental resource wastage but also imperil the

optimization of current transit operations, potentially spawning myriad ur-

ban challenges. As we champion novel transport alternatives, it’s paramount

to strike a judicious balance between efficiency and equity. A holistic ap-

proach, steered by the synergy of diverse stakeholder groups, trumps isolated

government or supplier-driven initiatives, preventing potential skews in this

delicate equilibrium.

7. Code and data availability

The bike-sharing data can be accessed from the Shenzhen Municipal Gov-

ernment’s Open Data Platform at https://opendata.sz.gov.cn/. Ad-

ditional related codes and datasets are available at https://github.com/

Liu-Zhihang/bike-sharing. Due to privacy concerns, mobile phone data

is not available for distribution. For a more in-depth understanding of this
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research, we have also constructed an interactive visualization website, which

can be accessed at https://zhihangliu.cn/projects/Sharingbike/Morning_

bike_sharing.html.
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Figure A.1: Location data aggregation process.
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Figure A.2: Jobs-housing commuting origin and destination grids. The color gradient
from blue to red indicates the number of commuters within the grid. (a) Origin grid. (b)
Destination grid.
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Figure A.3: Eight types of bike-sharing multimodal travel volume at each station. Above
the red dashed line: first mile; below: last mile. Left of the black dashed line: bike-
sharing-bus; right: bike-sharing-metro. (a, c) Morning and evening peak for first mile
bike-sharing-bus. (b, d) Morning and evening peak for first mile bike-sharing-metro. (e,
g) Morning and evening peak for last mile bus-bike-sharing. (f, h) Morning and evening
peak for last mile metro-bike-sharing.
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Figure A.4: Eight types of bike-sharing multimodal travel OD networks. Above the red
dashed line: first mile; below: last mile. Left of the black dashed line: bike-sharing-bus;
right: bike-sharing-metro. (a, c) Morning and evening peak for first mile bike-sharing-bus.
(b, d) Morning and evening peak for first mile bike-sharing-metro. (e, g) Morning and
evening peak for last mile bus-bike-sharing. (f, h) Morning and evening peak for last mile
metro-bike-sharing.
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Figure A.5: First and last mile GBDT model feature variable interaction summary plots.
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Figure A.6: First mile travel feature interaction dependence plot. (a) Urban village areas
(in square meters). (b) The average commuting time by public transportation. (c) POI
entropy representing mixed land use. (d) Number of commercial residential POIs.
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Figure A.7: Last mile travel feature interaction dependence plot. (a) Housing prices (in
yuan per square meter). (b) Number of commercial residential POIs. (c) Urban village
areas (in square meters). (d) POI entropy representing mixed land use.
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