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Although 5G Non-Terrestrial Networks envision regen-
erative satellites with on-board 5G modems to offer the
highest degree of user experience, current base-station
technology prohibits practical deployment in space. We
bridge this gap by presenting a shared platform that uni-
fies gNodeB and Artificial Intelligence (AI) functionality
on a hardware-accelerated, space-grade System-on-Chip.
By porting OpenAirInterface’s gNodeB onto this archi-
tecture and offloading DSP-intensive processing tasks of
the Physical layer to its Field Programmable Gate Ar-
ray, benchmarks indicate a reduction in resource require-
ments by over one order of magnitude, enabling in-space
processing and parallel execution of future AI workloads.
Moreover, hardware-accelerated support for the Linux In-
dustrial I/O Subsystem interface enables efficient connec-
tivity to space-ready RF frontends. A discussion on fur-
ther steps towards core network integration concludes
this paper.

1 Introduction

The expansion of 5G connectivity through Non-
Terrestrial Networks (NTNs) marks a significant ad-
vancement in the pursuit of global communication
coverage. By leveraging satellite and space-based plat-
forms, NTNs promise to extend high-speed cellular
networks to remote and underserved regions, facilitat-
ing critical applications in disaster recovery, maritime
and aeronautical communications, and the Internet of
Things (IoT). Among other use-cases, such as business-
to-business (B2B) and machine-to-machine (M2M),
NTNs initiated a race towards space-dominance that
culminated in the creation of multiple satellite mega
constellations [1, 2].

One of the key goals of 5G NTN is to enable un-
modified smartphones to directly connect with satel-
lite constellations, referred to as Direct-To-Cell (D2C)
access. Primarily led by private companies, different
approaches with respect to constellation type, and
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more importantly, on-board radio frequency (RF) tech-
nology are being developed. First successful field tri-
als, such as Lynk’s Sub-1-GHz GSM/2G-based test in
2020 [3, 4], or most recently SpaceX’s LTE/4G-based
demonstration in 2024 to D2C-modified satellites in
their Starlink fleet [5], confirmed principle feasibility.
Expansion into geostationary earth orbit (GEO) is also
being explored [6].

Despite its potential, the deployment of 5G NTNs
entails formidable challenges. These can be broadly
categorized into wireless propagation-related issues,
the integration of NTNs in existing Terrestrial Net-
works (TN), and computational-related challenges.
Additionally, efforts for augmenting the 5G stack with
Artificial Intelligence (AI) across various layers, espe-
cially the physical, MAC, and application layer, are
gaining momentum, as evidenced by the deployment
of embedded AI accelerators in state-of-the-art smart-
phones. This trend is expected to expand to the base-
station side [7, 8], necessitating on-board AI execution
capabilities. While the first two categories are being
addresses in the 5G NTN standard development, prac-
tical realization of the gNodeB on space-grade hard-
ware remains a largely unaddressed issue. Unique en-
vironmental challenges in space, such as lower power
capacities, radiation, extreme temperatures, and dis-
tinct processing technologies, necessitate innovative
solutions to transition from testbed setups to commer-
cially scalable implementations.

This paper presents a processing solution by real-
izing a 5G gNodeB on AMD-Xilinx’s space-grade Ver-
sal AI Core adaptive System-on-Chip (aSoC) series.
The main contributions are the following: By utiliz-
ing the OpenAirInterface’s (OAI) gNodeB implemen-
tation 1, the 5G stack is ported to the ARM-based
Versal aSoC, while DSP-intensive components are of-
floaded via hardware acceleration to the Field Pro-
grammable Gate Array (FPGA). Furthermore, we ex-
tend OAI’s radio head with support for the Linux In-

1https://openairinterface.org/
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Figure 1: System Architecture for shared 5G gNodeB and AI/ML application on an AMD-Xilinx Versal aSoC.

dustrial Input/Output (IIO) Subsystem. Moreover we
address future AI demands by implementing proof-
of-concept (PoC) AI functionality on the platform.

The rest of this paper is structured as follows: In
Sec. 2 we present the concept of the AI-augmented
5G base-station, outline design decisions w.r.t. pro-
cessing offloading to the SoC’s components, and intro-
duce the PoC AI application. Sec. 3 analyzes the re-
sults of hardware acceleration in terms of speed and
resource burden for three PHY configurations. Sec. 4
discusses the presented approach, discusses AI inte-
gration, elaborates on further optimization, and con-
cludes this work.

2 AI-augmented 5G base-station

2.1 Concept and Target Hardware
Platform

Artificial Intelligence is currently being explored on
various fronts within cellular networks and is ex-
pected to benefit a variety of aspects, such as network
and routing optimization, improved user experience
and quality of service, energy efficiency, and more.
While the integration of AI/ML computational capa-
bilities into terrestrial base-stations is being investi-
gated primarily with GPU-based approaches [9, 10],
space-bound systems lack a hardware platform that
can satisfy all demands.

With this work we present a shared system design
between gNodeB and AI-Accelerator on the novel Ver-
sal AI Core System-on-Chip. The Versal facilitates
heterogeneous processing with a state-of-the-art pro-
cessor, hardware-accelerated DSP capabilities on pro-
grammable logic (FPGA), and a so-called AI-engine ar-
ray, efficiently connected by a programmable Network-
on-Chip (NoC). The central idea is that the gNodeB

and AI Accelerator share this platform. The design
split is visualized in Fig. 1, with the blue-shaded
and red-shaded components denoting gNodeB and
AI Accelerator, respectively. To exploit the heteroge-
neous architecture effectively, the gNodeB and AI Ac-
celerator implement a design partitioning, distribut-
ing control and processing tasks to the most suitable
hardware component. The detailed implementation
of both components is discussed in the following two
sub-sections.

2.2 Hardware-Accelerated 5G gNodeB

The 5G gNodeB’s processing architecture leverages
a Hardware/Software Codesign approach. Computa-
tionally intensive and repetitive tasks are offloaded
to the FPGA, while tasks that require a more generic
processor, such as control functionality and higher lay-
ers of the 5G stack are handled by the Versal’s Appli-
cation Processing Unit (APU). This functional split
maximizes platform utilization and enhances perfor-
mance and power efficiency, addressing a crucial issue
in non-terrestrial environments.

2.2.1 Functional Split

Figure 1 illustrates the 5G stack’s layers and their
corresponding positions within the processing plat-
form. As indicated by the green-shaded items, all ma-
jor Physical-layer components, such as Coding, Mod-
ulation, Filtering, etc., and their inverse operations,
are highly suitable for offloading. Currently, Discrete
and Inverse Discrete Fourier Transforms (DFT/IDFT)
including cyclic prefix handling are offloaded to the
FPGA. Furthermore, OAI’s data interface to the Radio
Frequency (RF) frontend is extended with Lib-IIO ca-
pabilities, which utilize an FPGA implementation of
the underlying JESD204C protocol driver, fully alle-
viating the CPU from any communication overhead.
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Figure 2: Visualization of the Proof-of-Concept AI car traffic congestion detection application dataflow.

These tasks are significantly more efficient and perfor-
mant when executed on the PL section. Notably, the
building blocks remain configurable via a bus inter-
face from the ARM CPU, ensuring the flexibility of
the gNodeB.

2.2.2 Hardware-Software Synchronization

Since the processing blocks on the FPGA have to be
controlled differently compared to processing threads
in software, a novel control and synchronization
mechanism is introduced to the 5G Stack. This mech-
anism redirects the data flow from being written into
Random Access Memory (RAM) to special buffers,
which are directly accessible by the processing blocks
on the FPGA via DMA. Additionally, a client thread
manages the initiation and termination of processing
on the PL and ensures synchronization between hard-
ware processing and the calling thread through POSIX
Inter-Process Communication (IPC) methods.

2.3 AI Application

As briefly mentioned in Sub-Sec. 2.1, the Versal AI
Core series features an AI-Engine array which is a spe-
cial hardware feature used to accelerate AI/ML infer-
ence. On 400 Very Long Instruction Word (VLIW)-
Single Instruction Multiple Data (SIMD)-like vector
processors, typical ML operations, such as matrix mul-
tiplication and convolution, can be performed in a
massively data-parallel manner, reaching a perfor-
mance of up to 100 Int-8 TOPS. The manufacturer’s
Intellectual Property (IP) core Deep Learning Proces-
sor Unit accelerates ML inference on generic CNN-
and Dense-Layer-based model architectures by utiliz-
ing both AI-engine array and PL, as indicated by the
red-shaded region in Fig. 1.

To demonstrate the simultaneous operation of gN-
odeB and AI Accelerator on the same platform we de-
ploy a Proof-of-Concept AI Application in the Appli-
cation Layer with the assumption of using metadata
from the gNodeB as its input to solve a given task.
Here, we decided for a car traffic congestion detec-

tion algorithm by using the position of connected (as-
sumed vehicular) users. Fig. 2 visualizes the data-flow
starting with position information collected from the
gNodeB, reformatting the data, and finally processing
it with a neural network (NN).

3 Results

3.1 Partial Physical Layer Offloading

In this work, the reduction in CPU workload is used
as primary metric to measure the effectiveness of
hardware acceleration. Three Physical layer configu-
rations2 with varying computational loads as summa-
rized in Tab. 1 were implemented. Table 2 summa-
rizes the utilized hardware resources for CPU, FPGA,
and RAM for each configuration in HW-accelerated
and non-accelerated mode.

A significant reduction in CPU load is evident for
Config-1 and Config-2. On average, the CPU load is
reduced by about 25 %. For the largest configura-
tion (Config-3), no significant CPU reduction of is ob-
served, which can be attributed to the saturation of
the CPU both in the non- and HW-accelerated case.
This indicates that further offloading of other process-
ing steps is required to free up CPU resources. The
memory consumption remains unchanged indepen-
dent of offloading, since only the processing domain
changes. Overall, the required PL hardware resources
are below 5 %.

3.2 AI Accelerator Performance and
Resource Utilization

In this sub-section we evaluate the achieved NN infer-
ence performance and resource utilization. The U-Net-
based NN [11] with a relatively small input resolution

2The Physical layer test configurations can also be found at
https://gitlab.eurecom.fr/oai/openairinterface5g in the
leo-5g-ntn branch under gnb.sa.band66.fr1.25PRB.usrpx300.conf,
gnb.sa.band78.fr1.24PRB.usrpb210.conf, and
gnb.band78.tm1.106PRB.usrpx300.conf, respectively.

Proceedings of the 1st SPAICE Conference on AI in and for Space | Pages 308 - 312 DOI: 10.5281/zenodo.13885601

© 2024 Authors of this article as listed on page 308.
This work is openly licensed via CC BY 4.0.

310



PHY Config Resource Sub-Carriers Sub-Carrier (I)FFT Sample Rate Band RF Head
Blocks [#] [# Total] Spacing [kHz] Size [#] [MSamp/s] [Nr.]

Config-1 25 300 15 512 7.68 66 RF-SIM
Config-2 24 288 30 512 15.36 78 RF-SIM
Config-3 106 1.272 30 2048 61.44 78 RF-SIM

Table 1: Key properties of the implemented Physical layer configurations.

PHY Config HW FPGA CPU RAM
Acc. LUT FF BRAM URAM DSP [% total] [%]

Config-1
no 0 0 0 0 0 73 % 9.3 %
yes 1.7 % 1.6 % 4.7 % 0 3.2 % 53 % 9.3 %

Config-2
no 0 0 0 0 0 75 % 9.6 %
yes 1.7 % 1.6 % 4.7 % 0 3.2 % 55 % 9.6 %

Config-3
no 0 0 0 0 0 93 % 16.8 %
yes 1.7 % 1.6 % 4.7 % 0 3.2 % 91 % 16.8 %

Resources Available N.A. 899.000 1.799.000 34 MBit 130 MBit 1968 100 % 8 GB

Table 2: Summary of utilized hardware resources (CPU, FPGA, RAM) for each PHY configuration in HW-accelerated and
non HW-accelerated mode.

DPU Arch. #Batch #AI-E FPGA Time

C32B1 1 32 9 % 1.36 ms
C32B3 3 96 23 % 0.73 ms
C64B5 5 320 40 % 0.61 ms

Table 3: Resource Utilization and Performance of the AI
Accelerator.

of 128x128x1 pixels is evaluated on three DPU con-
figurations, i.e., the smallest (C32B1), medium-sized
(C32B3), and largest (C64B5) configuration, realiz-
ing a trade-off between performance and required re-
sources, which can be observed in Tab. 3. In summary,
an inference time of < 1 ms per batch is achieved,
demonstrating the platform’s AI capabilities. For a
more detailed performance analysis w.r.t. different
network architectures and sizes, please refer to [12].

4 Discussion

In this work we successfully implemented OAI’s gN-
odeB and AMD-Xilinx’s AI accelerator on a shared,
embedded platform. This is a significant achievement,
since OAI’s official system requirements (OS Ubuntu
22.04., 8 cores x86_64 @ 3.5 GHz, 32 GB RAM) pro-

hibit deployment on a practical space-grade system.
As shown in Tab. 2, we reduced the required resources
by over an order of magnitude. By using only a frac-
tion of the PL and no AI-Engines for the gNodeB, suf-
ficient resources are available for the AI-accelerator.
However, as shown in Sub-Sec. 3.1, our implementa-
tion has reached the limit for computationally heavy
configurations, necessitating further optimizations:

Further work The primary step is to offload more
PHY components, such as Coding, Scrambling, Modu-
lation, Filtering, and more, to alleviate the CPU from
most DSP-based processing burden. As a consequence
of realizing multiple components on the PL, an effi-
cient CPU-free inter-communication and data buffer-
ing strategy is to be implemented. Afterwards, the
focus might be shifted on higher layers.

Once the gNodeB itself is sufficiently HW-
accelerated, its connections to other base-stations and
the 5G core network must be taken care of. While
this will definitely require a hardware-accelerated
communication protocol implementation, the current
Ethernet-based NG- (gNodeB to core network) and
XN- (inter-gNodeB) interfaces must be replaced with
a space-to-ground (ground station) or inter-satellite
(relaying to ground station) link, respectively. This in-
herently requires a dynamic position-aware routing
algorithm to be designed.
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