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Abstract—We present a novel signal processing concept that
natively integrates artificial intelligence (AI) processing capabili-
ties into satellite platforms. The processing workflow on high-end,
resource-constrained platforms is typically Field Programmable
Gate Array (FPGA)-dominated which renders the efficient inte-
gration of Machine Learning-based components a challenge. We
address this by leveraging a novel System-on-Chip (SoC)-based
heterogeneous compute platform and propose a deployment
concept that allows for a flexible and dynamic arrangement of
conventional and AI-based processing steps. After a comprehen-
sive review of the hardware components we identify efficient
inter-component data streaming as the primary implementation
challenge, which we address using a zero-copy strategy. The
complete deployment process is outlined for an AI-augmented
telecommunications processing scenario. A succinct performance
analysis of the critical inter-component data flow concludes this
work, identifying potential bottlenecks and discussing avenues
for future enhancements.

Index Terms—Satellite processing, artificial intelligence, het-
erogeneous computing, zero-copy, wireless communication

I. INTRODUCTION

Artificial intelligence (AI) has become ubiquitous in ter-
restrial applications, offering innovative solutions for rapid
and efficient problem solving across various domains, includ-
ing image and speech recognition, behavioral observations,
autonomous reactions, and many more. While AI has seen
widespread adoption on earth, its potential for space-bound
systems, particularly satellites, has just recently begun to
receive significant attention [1].

Possible benefits of on-board AI affect the whole ecosystem
within and ”outside” of satellites. This includes removing the
necessity of human-based intervention in spacecraft control by
utilizing self-supervision and -recovery mechanisms through
AI-powered behavior analysis [2], alleviating bandwidth-
intensive raw data transfers for computer vision-based earth
observation (EO) applications by processing data directly
on-board [3], and increasing overall system performance by
exploiting the strengths of Machine Learning (ML) in digital
signal processing (DSP)-intensive tasks, such as telecommuni-
cations [4]. Ultimately, AI can completely transform how satel-
lites interact with terrestrial systems, transforming them from
mere data collectors with relay functionality to autonomous
datacenters in space.
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Key enabler is the integration of generic AI-centric pro-
cessing capabilities into the satellite platform and ensuring a
native integration into the conventional processing flow. While
terrestrial systems benefit from a wide landscape of specialized
hardware, such as Graphics Processing Units (GPU), Tensor
Processing Units (TPU), Digital Signal Processors, etc., which
can efficiently work in concert due to standardized communi-
cation protocols and drivers, space-bound solutions lack this
diversity. Amongst multiple restrictions, such as the limitation
in available hardware technology due to harmful radiation, a
tight power budget due to solar energy sources as well as
thermal management, or weak general computational power
due to heritage-proofed processors, the major challenge is the
extreme reliance on Field Programmable Gate Array (FPGA)-
devices, especially for high-performance satellites, which ren-
ders the seamless integration of AI into the processing chain
cumbersome.

This challenge has initiated a race amongst both established
companies as well as newly formed start-ups. Amongst many
proposed solutions, a straightforward approach is to utilize
standalone modules designed for AI computation, such as
NVIDIA’s embedded GPU module series [5] and Intel’s Mo-
vidius™ Myriad™ X Vision Processing Unit, or neuromorphic
architectures, such as Brainchip’s akida IP [6] and Intel’s Loihi
chip [7], accepting the penalty of missing radiation compliance
and its associated problems of runtime faults and a shortened
device lifespan. A different approach is the concept of General
Purpose Computing on Graphics Processing Units (GPGPU)
using FPGA-accelerated soft-GPU Intellectual Property (IP)-
cores, effectively realizing a GPU on the FPGA [8]. Further-
more, purely software-based solutions that target execution on
Central Processing Units (CPU) and microcontrollers are in
active development, such as Klepsydra AI’s high efficiency
inference framework [9].

However, the prevailing approach, among most solutions,
is to treat the AI application as a separate entity by either
managing it as an isolated software application or separating
it into a distinct hardware component. The lack of native
integration and the resulting suboptimal interfaces impede the
effectiveness for high-performance applications.

This paper takes a different approach by integrating, and
more importantly, interconnecting AI capabilities within the
heart of the satellite. Its main contributions are the following:
Based on a detailed component-level analysis of our next-
generation satellite processor, we derive a deployment strategy
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that prioritizes efficient data flow and effective hardware
utilization based on a future reference scenario from the
telecommunications domain, proposed by Petry et al [10]. To
highlight relationships between both works, a coherent color-
scheme is used throughout this work.

The rest of this paper is structured as follows: Sec. II
introduces the telecommunications satellite processor design
and reviews the reference scenario to be implemented. Sec.
III proposes a deployment concept after analyzing the relevant
hardware resources and their interconnectivity capabilities and
describes the mapping procedure from algorithm to hardware.
A brief performance analysis of the data flow is performed
in Sec. IV, followed by an analysis of the system’s behaviour
and a discussion of possible improvements. Lastly, Sec. V
concludes this work. This is followed by an outlook on the
remaining challenges towards achieving powerful AI integra-
tion.

II. AI-AUGMENTATION OF THE TELECOM PROCESSOR

In this section we describe the processor design and its main
components towards AI integration, and introduce the refer-
ence scenario which is later implemented on this processor.

A. Overview Telecom Processor Architecture

The next-generation telecommunications processor architec-
ture, developed as part of the European Space Agency (ESA)-
funded Theia project, consists of multiple functional compo-
nents on dedicated hardware boards, also known as slices,
interconnected by space-grade communication links such as
Space-Wire and optical links. Fig. 1 provides an overview of
these slices. Among a control unit that supervises the space-
craft’s health, and a stand-alone FPGA that enables in-flight
re-programmable classic signal processing capabilities, the key
slices w.r.t. telecommunications-related applications are the
RF frontend, the signal regeneration (Re-Gen), and the AI-&
DSP-Accelerator slices. While the RF slice typically functions
as simple interface to the radio spectrum (although com-
prising certain integrated static processing features), the Re-
Gen slice offers application-specific integrated circuit (ASIC)-
based processing capabilities, such as protocol-specific (de-
)coding and (de-)modulation. The main innovation is the first-
of-its-kind AI- & DSP-Accelerator slice built around AMD-
Xilinx’s Versal series [11], as explained in subsection III-B.
This slice is designed to serve as the main workhorse for
tightly integrated AI-augmented processing scenarios.

B. Reference Scenario: AI-augmented Communications Sys-
tem with Deep Learning-based Signal Synchronization

Machine Learning (ML) has expanded into various as-
pects of wireless communication, including Integrated Sens-
ing and Communications (ISAC) [12], differentiable Ray-
Tracing-based digital-twin networks [13], [14], physical layer
transceiver design [15]–[19], and more. The telecommunica-
tion satellite industry has recognized the potential of ML in
its DSP-heavy applications, including beamforming and beam
management, network orchestration and inter-satellite routing,
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Fig. 1. Overview of the telecommunications processor design and its
components. Detailed look into the AI- & DSP-Accelerator slice.

and radio access network (RAN) processing. Additionally, it
has acknowledged the necessity of ML in future communica-
tion networks, such as 5G Non-Terrestrial-Network (NTN), as
indicated by most 3GPP study items [20], [21], on satellite
functionality.

To illustrate the presented deployment concept we select a
reference scenario from the telecommunications domain that
represents the key concept of future AI-augmented processing
chains well: Combining conventional (classical) and AI-based
processing blocks in a hybrid processing strategy. We realize a
novel AI-augmented RF transceiver design from the receiver’s
perspective. The receiver integrates an auto-regressive signal
synchronization procedure that estimates and compensates for
coarse and fine center frequency offset (CFO) and sample
time offset (STO) solely from the received IQ-samples. The
”estimate-and-transform” strategy re-uses the concept of a
Radio Transformer Network [22], utilizing mostly ML-based
blocks to estimate certain signal parameters, followed by clas-
sical blocks to perform compensating signal transformations
based on those estimations.

Fig. 2 visualizes the processing pipelines of the transmitter
and receiver in analogous colors as originally presented in
[10]. Small solid-border boxes denote the individual process-
ing steps (turquoise: ML-based, gray: classic, red: RTN) and
their surrounding shaded dotted-border boxes indicate their
respective functionality. By focusing only on the receiver
algorithm, it is evident that a complex computational graph
which interleaves ML- and classically-based operations is
utilized. Without delving too deeply into the functionality
of the individual components, two RTNs are employed. The
lower one utilizes a CNN to estimate synchronization-related
properties, such as the phase offset from the RF signal,
followed by the corresponding signal transformation using
classic operations.

The utilization of a mixture of classic and ML-based pro-
cessing is essential for high-performance and high-throughput
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Fig. 2. Visualization of the transceiver processing chain. Machine Learning-based, classical, and RTN-based operations are shaded with turquoise, gray, and
red colors, respectively. The surrounding dotted-border boxes indicate the processing blocks functionality.

DSP applications. Both types offer distinct advantages over
each other in terms of functional performance and computa-
tional complexity depending on the specific task. A hybrid
architecture that can not only support both ML and classical
operations, but also interconnects them in a highly flexible
manner to allow a complex data flow, is required to realize
such AI-augmented concepts effectively. Therefore, the chosen
application serves as a challenging deployment scenario which
is detailed in the next section.

III. DEPLOYMENT STRATEGY AND IMPLEMENTATION

In this section, we outline the deployment strategy for the
reference scenario on the AI- & DSP-Accelerator slice. We
begin by examining the challenges associated with transition-
ing from a single-component to a multi-component processing
system. Subsequently, we explore the capabilities of each
component and their interconnectivity. From this we derive
a mapping strategy that associates algorithm parts with hard-
ware, and define a corresponding control strategy.

A. Transitioning to a Modular Computational Architecture

Porting an algorithm from a single-component to a multi-
component compute platform bears a huge potential towards
overall system performance, including throughput perfor-
mance, power efficiency, scalability, resource optimization,
and fault tolerance. The downside is typically an increased
system complexity. New issues emerge, such as workload
distribution and balancing, data buffering and synchroniza-
tion, inter-component communication, supervision and control
mechanisms, among others. These aspects are crucial and must
be carefully addressed to achieve maximum effectiveness.

Since addressing all of these issues in this work is not
feasible, in the remainder of this work we want to focus on the
most crucial two, which are workload distribution and device
intercommunication.

a) Workload distribution: Splitting up an algorithm and
distributing its parts to various components requires consider-
ation of the following:

• Matching computational requirements with native hard-
ware capabilities. For instance, performing matrix multi-
plications on optimized rather than general purpose hard-
ware, while maintaining sufficient numerical precision
(e.g., fix- or floating-point format, bit-width).

• Ensuring sufficient local data cache to avoid slow external
buffering.

• Maintaining equal execution times to allow efficient su-
perscalar execution (refer to the Pipeline-Problem [23]).

In summary, the primary goal is to distribute the parts to
the most suitable hardware components while ensuring rapid
data transfers and interconnectivity. This ensures that the
primary bottleneck of the system is compute power rather than
secondary effects like memory size and data access limitations.

b) Inter-device connectivity: Efficient communication
between ’neighboring’ distributed parts is essential and di-
rectly impacts the overall system throughput when neglected.
Especially in data-heavy applications, such as image process-
ing and raw radio signal processing, connectivity has shown to
often limit the system performance [24], [25]. However, one
needs to distinguish between global and local connectivity.
Global refers to the external interface that lets the device
communicate to the other devices, for instance, using a system-
bus or in case of the Versal the Network-on-Chip (NoC). Local
refers to the internal capabilities of the device to store and
move data between its low-level processing elements, such
as the FPGA’s Block-RAM or the AI-Engines’ (see Sub-sec.
III-B) local memory.

To address both of these subjects accurately, a deep under-
standing of the involved components is paramount. Therefore,
the following subsection comprises an individual component-
wise analysis before a hardware mapping can be performed.

B. Overview and Analysis of Processing Resources

In the following, we will summarize the essential com-
ponents on the AI- & DSP-Accelerator slice, whose core
component is the Versal AI-Core adaptive System-on-Chip
[11]. Integrated inside are the Network-on-Chip (NoC), the



Processing System (PS), an FPGA (here also referred to as
DSP-Accelerator), and an AI-Engine (AIE) array (part of the
AI-Accelerator).

1) Network-on-Chip: The Network-on-Chip (NoC) serves
as a multi-terabit interconnect between the different compute
resources, memory (e.g., DDR4, HBM), and peripheral inter-
faces (e.g., PCIe, 100G Multirate Ethernet). Data enters the
NoC through either a memory-mapped or streaming Advanced
eXtensible Interface (AXI) port, which is an interface protocol
defined in ARMs Advanced Microcontroller Bus Architecture
(AMBA) standard. The NoC allows for flexible and dynamic
access from any point within the SoC, servicing all major data
generating and consuming components. The NoC is the central
interface to the DDR memory controllers, external memory,
on-chip memory (OCM), and Direct-Memory-Access (DMA)
unit.

2) Processing System: The processing system is based
on a dual-core ARM Cortex-A72 application processor and
a dual-core ARM Cortex-R5F real-time processor with a
primary intention for control and supervision tasks. It hosts an
operating system (here: AMD-Xilinx’s Petalinux) containing a
Hardware Software Interface (HSI) that provides the necessary
infrastructure (drivers, interfaces, configurations) to communi-
cate with the SoC’s components, such as the FPGA and the AI-
engine array. The PS directly integrates an exhaustive number
of peripherals, such as Gigabit Ethernet, Serial Peripheral
Interface (SPI), Controller Area Network Flexible Data-Rate
(CAN-FD), etc., and is furthermore connected to the NoC.

3) AI-Accelerator: The AI-Accelerator is a hardware-
software co-design based on AMD-Xilinx’s Deep-Learning
Processor Unit (DPU) IP-core. It implements a configurable
computation engine optimized for deep neural networks
(DNN) using a synthesized code-block on the FPGA with
a series of C++ programs deployed on the AI-Engines. The
DPU is a generic ML accelerator that loads pre-compiled DNN
models dynamically at run-time and executes them as needed.
It currently only supports 8-bit fixed-point quantization of
weights and features. For a more detailed introduction, please
see [26].

Although the DPU utilizes multiple computational and
memory resources internally, it can be perceived as a holistic
component from a global perspective, whose main data inter-
face (input and output) is the RAM.

4) DSP-Accelerator: For this hardware platform, the DSP-
Accelerator consists solely of the SoC’s FPGA. This ter-
minology is used to ensure the generality of our proposed
deployment concept and avoid being limited by resource-
specific details. DSP components, such as filtering, FFT, or
custom operations like transformation blocks of RTNs (see
Sub-sec. II-B), are implemented on the FPGA using pre-built
IP cores or RTL-level code. The available local storage is
limited by the FPGA’s internal RAM blocks (i.e., Block-RAM,
Ultra-RAM, and distributed RAM), which total to around 200
MB for the largest chip.

5) Random Access Memory: Random Access Memory
(RAM) is the only component which is not integrated inside
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the SoC, but placed on the AI- & DSP-Accelerator slice as a
dedicated component. It is physically connected to the SoC’s
DDR memory controller, and made available to the other
resources through the NoC, as mentioned above. The RAM
is an especially crucial component, since it serves as a central
element for data sharing between all mentioned components.
The hereby used memory is an 8 Gb PC4-3200 DDR4 module
with a maximum bandwidth of 25.6 GB/s [27].

After having introduced all relevant components, the fol-
lowing section elaborates on how they can be used in concert
to enable a complex computation and data flow.

C. Inter-Component Communication

The interplay between various components is mainly defined
by their ability to communicate with each other. On the
one hand, this refers to the exchange of input, output, and
intermediate data. On the other hand, this also refers to the
ability to perform control and synchronization signalling to
ensure smooth processing. For our further analysis we restrict
our focus to data exchange only, since signalling does not
present a significant bottleneck in our data-heavy scenario and
is briefly handled in Sub-sec. III-E. Fig. 3 offers a glimpse
into the main processing elements’ data flow to and from one
another. The RAM serves as a centralized storage hub, where
all components obtain and store their processed data. This
arrangement is inherently shaped by the centralized communi-
cation facilitated by the NoC and the individual components’
lack of sufficient local storage. It therefore becomes clear, that
the ability to exchange data between components is facilitated
by the RAM and its access mechanisms.
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The PS has a rudimentary access mechanism solely through
its Load-Store Unit and is therefore clearly not intended
to actively participate in any data-intensive subtasks. This
limitation extends to all peripherals that route data through the
PS. Additionally, any RAM access, e.g., data copying between
different regions (e.g., static and dynamic allocated buffers), is
to be avoided. Since there exists no RAM-to-RAM DMA, this
operation can sometimes be necessary, hence its performance
is evaluated in sec. IV.

The AI-Accelerator uses separate buffers in the RAM for
loading input data and storing the final result. Its access
mechanism employs DMA for both directions. Due to the
implementation of the underlying DPU, it is restricted to
dynamically allocated buffers (i.e., accessible via virtual ad-
dress), only. The internal mechanism to store intermediate
results is proprietary and likely uses both RAM and FPGA-
RAM.

Lastly, the DSP-Accelerator shares a similar interface like
the AI-Accelerator, but it employs static memory-mapped
input and output buffers configured during the operating
system’s build phase. AXI-Stream facilitates the transport of
intermediate on-device data transfers, especially in scenarios
involving buffering or a series of sequentially interconnected
DSP blocks.

With the computational capabilities and data handling ca-
pacity of the components described, we are now ready to
implement the reference scenario on hardware, as detailed in
the next subsection.

D. Software-Hardware Mapping and Data Exchange

1) General Strategy and Data Fusion Approach: As of
now, the software-hardware mapping is performed in a fully
manual manner, since it enables the highest level of flexibility
for exploring different design decisions. However, the mapping

generally follows an intuitive and logical approach: ML-
based blocks are always mapped to the AI-Accelerator if the
operation is natively supported. Alternatively, the preferred
fallback option is the DSP-Accelerator, followed by the PS.
Classical processing blocks are preferably mapped to the DSP-
Accelerator, with the PS as fallback option. It is crucial to
understand that a mapping to the PS shall be avoided, even for
low processing complexity steps, since its primary bottleneck
is memory bandwidth, not computational power.

Equally important is to efficiently route the data between
various processing components and domains. Key to efficient
and fast data exchange is a zero-copy strategy. Zero-copy
implies, that adjacent operations share the same memory
interface, i.e., data buffer. In practise this requires aligning the
memory addresses between adjacent input-output and output-
input relationships. For instance, as visualized in Fig. 2, the
Matched-Filter’s output buffer address must equal the (fine)
CFO Correction’s input buffer address. Although a simple
concept, aligning static (defined when building the operating
system) and dynamic (defined during run-time) buffers in
different memory regions and mapping virtual to physical
memory address can be inconvenient, depending on the un-
derlying drivers used.

2) Mapping of the AI-augmented Receiver Algorithm: As
described in Sub-sec. II-B and shown in Fig. 2, the receiver
algorithm consists of multiple interleaved classical- and ML-
based processing blocks. The hardware mapping is visualized
in Fig. 4. The processing flow is shown in the top half, the
memory access patterns are shown in the bottom half. The
same processing blocks as introduced in Fig. 2 are shown,
with gray, yellow, and turquoise colors denoting their mapping
to PS, DSP-, and AI-Accelerator, respectively.

It is evident, that the mixture of processing domains results
in a variety of interconnections, which are labelled using
letters surrounded with a circle. Implementing them efficiently



is the major challenge in a multi-component system. These
interconnections are now described in detail:

• A: Data transfer between peripheral and DSP-Accelerator.
Continuous data is buffered in a statically allocated ring
buffer by the peripheral’s driver, whose segments are then
read by the DSP-Accelerator using its DMA.

• B: Data transfer between two sequential DSP-blocks.
Data is directly streamed between both blocks using AXI-
Stream. No significant local data storage is required,
hence, RAM access is not necessary.

• B*, D, and D*: See below.
• C: Data transfer between DSP- and AI-Accelerator: The

output of the DPS-Accelerator is stored via DMA in the
dynamic input buffer of the AI-accelerator, which is then
read via DMA by the AI-Accelerator.

• E: Data transfer between AI-Accelerator and DSP-
Accelerator or PS: The output of the AI-Accelerator is
stored via DMA in a dynamic buffer, which can directly
be accessed by the DSP-Accelerator via DMA or by the
PS using its Load-Store unit.

A significant complication is introduced within the AI-
Accelerator, which features an RTN block whose transfor-
mation component (Phase-Offset-Correction) is classical, and
hence deployed on the DSP-Accelerator. This effectively leads
to a classical component enclosed within two ML components.
While in general it is possible to deploy multiple separate
neural networks (NN) on the AI-Accelerator to address such
an issue, the approach of a single NN is pursued here.
This is made possible by utilizing the DPU’s Custom-Layer
functionality, which allows to execute arbitrary code, and
hence even a block on the DSP-Accelerator, in-between two
layers of the NN. In our case, the following interconnections
are required:

• B*: Data transfer between a stand-alone and an inter-
leaved DSP-block: Since the data cannot be directly
stream between both DSP-blocks due to additional data
dependencies on the AI-Accelerator, the input buffer is
used as temporary storage, and simply read via DMA
when required.

• D: Data transfer of an intermediate result between AI- and
DSP-Accelerator: The intermediate result is automatically
stored in a dynamic buffer by the AI-Accelerator and is
then read via the DSP-Accelerator’s DMA.

• D*: Same as D, but in reverse direction and order.
Finally, after defining the hardware mapping, intercon-

nections, and memory access patterns, we define a control
procedure that supervises the complete computation process.

E. Process Control Procedure

The computation process is controlled by a Python applica-
tion running on the PS. For simplicity, computation is executed
in a one-shot, non-pipelined manner. Pipelining is discussed
in Sec. V. The application has the following tasks:

• Wait asynchronously for a ring buffer segment to be filled
with data from the RF frontend slice.

• Start FFT, frequency-offset correction, and FIR filter
component on DMA-Accelerator, wait until completion.

• Start AI-Accelerator. Upon reaching the phase-offset cor-
rection block, the DPU’s Custom-Layer API executes a
custom script and supplies its dynamic input and result
buffer addresses, which triggers the DSP-Accelerator’s
DMA for both dynamic buffers. Upon completion of the
block, the result is written via DMA into the dynamic
output buffer supplied by the Custom-Layer API, and
control is returned back to the AI-Accelerator.

• Upon completion of the AI-Accelerators execution, the
final result is available in the AI-Accelerators dynamic
output buffer and can be further routed to its destination.

With the procedure defined, the reference scenario is fully
implemented. We can now begin to evaluate the performance
of this implementation, which is detailed in the next section.

IV. PERFORMANCE EVALUATION

This goal of this section is to explore the practical perfor-
mance of our deployment concept. Since the AI-Accelerator’s
performance has already been sufficiently analyzed [25], [26],
[28], [29], and the DSP-Accelerator’s performance is highly
predictable due to its reliance on the FPGA, we focus our
analysis on the components’ inter-communication capabilities.
After reviewing the measurement methodology and system
configuration, we summarize our findings and provide a criti-
cal discussion on possible improvements.

A. Measurement methodology and system configuration

As observed in Sub-sec. III-D, a complex computation graph
necessitates various communication interfaces between the
involved components. Only a single inefficient interface can
have a significant impact on the overall system performance,
which is why this section evaluates the achievable data transfer
speeds between all involved components. In the following we
list the related interfaces, calculate their theoretical maximum
performance, and detail our measurement strategy to evaluate
their realistic performance. For all measurements we use a
buffer size of 64 MiB.

a) AI-Accelerator - RAM: The AI-Accelerator utilizes
DMA to read and write its input and output data. Since the
underlying DPU is a proprietary and encrypted hardware-
software co-design, its realistic bandwidth to memory can
only be estimated. Since running an ”empty” model with zero
layers (to remove any computation burden and hence time) is
not supported, we can only measure the total inference time
for valid neural networks. Therefore, we compile and run the
execution time of multiple models that each contain the exact
same layer (here: convolutional layer with resolution 512x512,
kernel 7x7, 128 input- and output-channels, same padding) a
different amount of times, which lets us determine the isolated
layer run-time, and therefore the raw data transmission time
by subtracting the layer execution time. Note, that the model
loading time is (correctly) not included in this measurement,
as model loading is performed prior to execution. This method



TABLE I
PERFORMANCE ANALYSIS OF THE PS, AI-, AND DSP-ACCELERATOR’S THEORETIC AND MEASURED COMMUNICATION CAPABILITIES WITH THE

MEMORY. THE EVALUATED METRIC IS THE DATA RATE.

Operation Route Throughput [GiB/s]
Source via Destination Forward Backward Theoretic Max.

Data Feed AI-Accelerator DMA RAM (dynamic) 3.19 4.47 - 26.82
Data Feed DSP-Accelerator DMA RAM (dynamic) 14.59 14.91 17.88
DSP Pipeline DSP-Accelerator AXI-Stream DSP-Accelerator - - 17.88
Copy Buffer RAM PS Load-Store-Unit RAM 4.34 4.29 8.94

computes the average transfer rate for reading and writing, the
separate values cannot be identified.

The theoretical maximum rate can be computed based on
the bus-width of the corresponding input and output data AXI-
port1 (128 · batch-size), for a batch-size up to six. For a clock
frequency, which is typically set to 300MHz, this results in a
maximum theoretic data rate of 4.47 GiB/s per Batch, totalling
to 26.82 GiB/s for multi-batch execution. The configuration
analyzed here utilizes single-batch execution only.

b) DSP-Accelerator - RAM: The DSP-Accelerator uti-
lizes DMA to access the RAM. As a first-order approximation,
the speed depends on the DMA’s frequency and bus-width and
can be calculated as

Transfer Speed = fDMA · bus-widthDMA. (1)

Although fDMA can reach values up to 500MHz [29], a
popular setting that avoids timing problems with most IP-cores
(including the DPU) is 300MHz, which is also used here. Al-
though the speed is expected to be similar in forward (reading
from the RAM) and backward (writing to the RAM) direction,
it is measured in both directions by implementing an ”empty”
receiving IP-core on the FPGA (to avoid transfer stalls caused
by computation) when reading data, and a constant data source
when writing data to the RAM. The DMAs are controlled via
the python py-uio library 2.

c) DSP-Accelerator - DSP-Accelerator: Communication
between two sequential DSP-blocks is implemented via AXI-
Stream, which has an intrinsic deterministic performance. Its
performance is calculated as

Transfer Speed = fAXI-Stream · bus-widthAXI. (2)

With fAXI-Stream = 300MHz and AXI-buswidth = 512, the
interface speed results to 17.88GiB/s. No measurement has
been performed, since the calculated speed is expected to be
identical with the practical speed.

d) PS - RAM: The PS accesses the RAM via its Load-
Store Unit, and hence can be easily evaluated by timing the
corresponding system-native memory copy functions. Since
our control program utilizes python, we use ctypes3 system-
native memmove method to evaluate the transfer speeds from
a static to a dynamically allocated buffer and in reverse
direction. On a first-order approximation, the theoretical limit

1https://docs.xilinx.com/r/en-US/pg389-dpucvdx8g/Interface-Ports ref. to
port Mxx IMG AXI.

2py-uio library website: https://github.com/mvduin/py-uio
3ctypes python library: https://docs.python.org/3/library/ctypes.html

is defined by the max. CPU clock frequency (fCPU,max =
1.2GHz) and the memory bus-width (64 bits), resulting to
8.94 GiB/s.

B. Measured Performance Results

Table I summarizes the benchmarked operations and their
results. The PS-based buffer copy mechanism achieves a
realistic rate of 4.3 GiB/s which is rougly identical in both
directions, realizing 48% of its theoretical speed. The interface
between AI-Accelerator and RAM achieves a 71% utilization
with 3.19 GiB/s transfer speed. The DSP-Accelerator is able
to access the memory with a much higher rate of 14.59 and
14.91 GiB/s in forward and backward direction, respectively,
realizing 82 % of its maximum potential. Lastly, as mentioned
before, the on-device data transfer of the DSP-Accelerator
achieves 17.88 GiB/s.

C. Discussion and Future Improvements

The above results are promising, indicating efficient uti-
lization of the overall system through our deployment ap-
proach. The AI- and DSP-Accelerators demonstrate effective
coordination in exchanging process data. Notably, the DSP-
Accelerator’s utilization of multiple sequential processing
blocks proves highly effective, achieving data transfers at
theoretical maximum speeds.

Measurements confirm that the PS’s access inefficiency to
memory poses a potential performance bottleneck if utilized,
for instance, when performing buffer copy operations. By uti-
lizing cache coherent memory access (not used in this work),
an increase in bandwidth is expected. Another reasons for the
gap between theoretical and measured communication speed
for the other components is the non-optimized configuration
of DMA frequencies and bus widths.

Not analyzed in this work is the additional overhead in-
curred by data conversion or formatting (e.g., from INT8 to
FLOAT32) between different processing components, which is
expected to have a minimal impact on the overall performance.
These conversions would typically be deployed on the DSP-
Accelerator.

V. CONCLUSION AND FUTURE WORK

In conclusion, this paper has demonstrated the successful
integration of artificial intelligence (AI) processing capabilities
into high-performance satellite platforms, specifically within
the context of telecommunications signal processing. By inter-
leaving AI-based computation blocks within an FPGA-based



processing framework, we have shown the feasibility of en-
hancing traditional data processing workflows with advanced
AI techniques. Through a thorough evaluation of hardware
components and communication interfaces, we have achieved
a seamless deployment of an AI-augmented signal process-
ing pipeline on state-of-the-art telecommunications processor
hardware. Our results highlight the potential for improving
satellite platform performance and efficiency through the in-
telligent use of AI technologies.

a) Future work: Moving forward, there are several av-
enues for future research and development in this area. Firstly,
further optimization of communication interfaces and hard-
ware configurations could lead to enhanced system perfor-
mance and efficiency. Moreover, pipelining the data flow bears
significant overall performance potential, ideally keeping the
DSP- and AI-Accelerator occupied at all times and removing
the idle periods when waiting for prior computation to fin-
ish. This would require the introduction of additional buffer
memory between each pipelined computation stage and a
modification to the zero-copy strategy to preserve optimal
communication. A further extension is to realize a multi-
DPU-based AI-Accelerator to run multiple different neural
networks simultaneously. Additionally, a highly relevant future
feature could be to implement real-time adaptivity to the AI-
related processing components, such as enabling in run-time
weights update or neural network training. Lastly, the topic
of redundancy, system behaviour in case of component faults,
and options to restore service should be addressed.
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