
PC-LMT: The Point Cloud Log Merge Tree for the Helena Point
Cloud Database

Balthasar Teuscher
Professorship Big Geospatial Data Management

Technical University of Munich, Germany
balthasar.teuscher@tum.de

Martin Werner
Professorship Big Geospatial Data Management

Technical University of Munich, Germany
martin.werner@tum.de

Figure 1: Point cloud visualization of Amsterdam from AHN3 with a log-structured merge-tree (PC-LMT).

Abstract
Point cloud data analysis and visualization workflows traditionally
involve the sequential steps of information retrieval and preceding
extensive data preparation. For example, visualizing large point
clouds often takes days of processing to translate the data into a
suitable representation before visual feedback is possible. While
this works fine for static datasets and time-insensitive result con-
sumption, it is unsuitable for dynamic contexts requiring real-time
analysis, such as autonomous navigation. To address these short-
comings, we propose a point cloud data management approach
based on a log-structured merge-tree that facilitates concurrent
and continuous data ingestion and retrieval in real-time at scale.
In this paper, we illustrate how to adapt this data structure to the
peculiarities of point clouds and how various use cases and query
modalities can be supported and optimized by specialized merge
operations to repartition and refine the data structure and layout.
This includes relying on grid-rounded coordinates and integrating
importance as a means for effective and efficient storage, processing,
and sampling from point clouds. Initial experiments and evaluation
results display promising results and affirm the viability of this
approach for Helena, a conceptual next-generation point cloud data
management platform for interactive visualization and real-time
analytics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1143-5/24/10
https://doi.org/10.1145/3681763.3698476

CCS Concepts
• Information systems→ Database design and models; Multi-
dimensional range search; Data structures; Data layout.

Keywords
Point Cloud, Data Management System, LSM-tree

ACM Reference Format:
Balthasar Teuscher and Martin Werner. 2024. PC-LMT: The Point Cloud Log
Merge Tree for the Helena Point Cloud Database. In 12th ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data (BigSpatial’24),
October 29-November 1, 2024, Atlanta, GA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3681763.3698476

1 Introduction
Point clouds have gained increasing interest in recent years due
to point cloud data generating sensor improvements and dissem-
ination. The variety of sensors deployed on emerging platforms
like mobile phones, drones, or cars led to an unprecedented growth
of point cloud data volume. Further, the velocity to process and
analyze such data reached new heights through autonomous navi-
gation and change monitoring applications.

These developments demand ingesting and analyzing high vol-
umes of data in real time, which presents new challenges for existing
point cloud data management solutions. Traditional approaches
are commonly constrained to time-insensitive batch processing
and time-consuming transformations to enable analytical or visu-
alization workloads [1, 4]. Fortunately, solutions from the broader
field of Big Data exist that can help address these domain-specific
shortcomings.

https://orcid.org/0000-0002-2811-1920
https://orcid.org/0000-0002-6951-8022
https://doi.org/10.1145/3681763.3698476
https://doi.org/10.1145/3681763.3698476

BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA Teuscher and Werner

This paper explores the potential of a log-structured merge-tree
(LSM-tree) data structure for point cloud data management. LSM-
trees are widely integrated into database solutions to handle write-
heavy workloads such as real-time data processing and stream
processing [5]. The main benefits of such an approach are high
load throughput while offering real-time query capabilities. We
show that this approach provides the following benefits compared
to existing solutions for point cloud data management:
• high load/write throughput
• loaded data is instantly queriable
• iterative refinement in the background
• adaptability to various query patterns
• scalability to large datasets
• support for grid-rounded coordinates

While the above characteristics are native to the vanilla LSM-tree
data structure, the peculiarities of point cloud data require some
adaptations. For one, the internal realization of LSM-trees based on
a key-value store with an ordered keyspace requires mapping points
onto one dimension. Although the creation time or a lexicographical
order is possible, we consider a Z-order curve as a baseline to
preserve some spatial locality.

Additionally, by using grid-rounded coordinates and introducing
elaborated merging strategies, it is possible to refine the storage
layout to various use cases and scenarios for increased query effi-
ciency. For example, one could mimic a bounding volume hierarchy
based on point importance sampling, commonly implemented in
data structures optimized for visualization.

The remainder of this paper is organized as follows. Section 2
provides the foundational background on point cloud data represen-
tations and the original log-structured merge-tree data structure.
Section 3 presents our adaptation of a point cloud log merge tree
(PC-LMT) and its integration into the Helena Point Cloud Database.
Section 4 discusses the algorithmic implications more in-depth.
Section 5 evaluates the system on key metrics. Finally, Section 7
concludes the paper and gives an outlook on future work.

2 Background
In this section, we present the foundational concepts of this work.
We start by describing point clouds in a formalized manner, in-
cluding a grid-rounded perspective and its implications. We then
continue with the aspect of importance augmentation for sampling
points, a necessity for visualizing large point clouds. Finally, the
original concept of a log-structured merge-tree (LSM-tree) is intro-
duced to make ground for the following chapters.

2.1 Point Clouds
A point cloud is a set of points in some geometric space with the
interesting property that they are invariant under ordering. More
formally:

Definition 1. Let𝑀 be a metric space. A point cloud 𝑃 in𝑀 is a
set 𝑃 = {𝑝𝑖 ∈ 𝑀} of points. Two point clouds are equal if the sets are
equal; hence, the order of the points does not matter. The dimension
of the point cloud is the dimension of𝑀 .

Point clouds commonly represent observations from laser scan-
ners, photogrammetry, or SLAM. They can be georeferenced by

associating coordinate dimensions with geographic coordinate ref-
erence systems (CRS), height systems, or time epochs and scales.
Such point clouds are coined geographic point clouds if a geo-
graphic reference is associated or spatiotemporal point clouds
if both a geographic and a temporal reference are associated.

For archival purposes and exchange, point clouds are commonly
stored in the LAS/LAZ file format [3]. The location encoding of
this format adds two important but often overlooked aspects to the
theory of point clouds:

Definition 2. The integral grid in R𝑛 is the set Z𝑛 ⊂ R𝑛 of
points with integer coordinates.

Definition 3. Given a metric space𝑀 , an affine grid 𝐺 in𝑀 is
the image of the integral grid under an affine map 𝛼 : R𝑛 → R𝑛 :

𝐺 =
{
𝛼 (𝑧) ∈ 𝑀 : 𝑧 ∈ Z𝑛

}
This leads to the following essential representation of point

clouds:

Definition 4. A point cloud 𝑃 is grid-grounded with respect to
an affine grid 𝐺 if it is a subset thereof.

A point cloud can be easily rounded into a grid-rounded point
cloud as follows:

Given a point cloud 𝑃 and an affine grid 𝐺 , the grid rounding
algorithm replaces each point 𝑝 in 𝑃 with its nearest neighbor in𝐺 .

The value of grid-rounded point clouds is that they no longer
need to represent point locations with floating point coordinates.
Instead, we can remember the affine map 𝛼 and the integral coordi-
nates of the grid.

This representation is the core of the LAS file format, and it
has the following important advantages over using floating point
numbers:
• better representation accuracy
• smaller memory footprint
• efficient and robust computation

The space efficiency of points in point clouds is paramount, given
their significant amount, and problems with visualizing or com-
puting tasks with point clouds are prevalent due to their excessive
size.

2.2 Importance in Point Clouds
The problem of visualizing large point clouds is commonly solved
by creating a layered quad- or octree[9]. Its nodes represent a hier-
archical space partitioning, among which the points are distributed
respecting a given point budget per node. The points of a given
node are selected such that they are a representative sample of
the original point cloud within its bounds. From this, it follows
naturally that through the depth of the node in the tree, an implicit
discrete importance is given to the points. This is sometimes called
Level of Detail (LoD), as these levels are mapped to the camera
position so that the points from a few nodes fill the viewport when
visualizing.

Having some importance assigned to points in point clouds is
necessary for visualizing large point clouds. However, the implicit

PC-LMT: The Point Cloud Log Merge Tree for the Helena Point Cloud Database BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA

discrete importance of a tree is not enough to support generic
sampling over the point cloud, which is desirable for analytical
approaches. An example is sampling pointsets of different densities
for machine learning models[7]. Others are methods that work on
small randomized samples to approximate the whole dataset, an
approach increasingly valid once point clouds grow larger.

In the following, we present and discuss twomethods for defining
the importance of points that facilitate arbitrary sampling from
point clouds.

2.2.1 Random Importance. Random importance in point clouds can
be achieved by assigning each point with a quasi-distinct random
importance value from a normal distribution, for example, a random
floating point value in the range (0...1). This concept is sometimes
called continuous Level of Importance (cLoI), a substitution for LOD.
With a random importance attribute, sampling becomes a range
query over these importance values, which can be combined with
spatial range predicates. Hence, this makes it possible to resolve
arbitrary bounding volume with a given density or point budget.
While random importance gives a decent sample quality, one can
further improve importance generation with dart throwing.

2.2.2 Dart Throwing. As noted in the previous paragraph, sam-
pling equates to an importance range query, and thus, the quality
is given by the underlying randomness. A strategy for generating
higher-quality samples is Disk- or Blue Noise sampling[2]. Sampled
points in these approaches are more evenly distributed regarding
the distance to their neighbors as selecting points in the vicinity of
already selected points is precluded. At the same time, the distance
should be minimal.

2.3 Log Merge Trees in Big Data
In Big Data, the log-structured merge tree (LSM-tree) is a founda-
tional data structure [6]. It efficiently organizes key-value-structured
data inserted into the database for key-based (individual) and range-
based (key ranges) retrieval under high insert volume and velocity.

Definition 5. A key-value set 𝑆 is a set of pairs (𝑘, 𝑣) ∈ 𝐾 ×𝑉
where 𝐾 is a domain of keys and 𝑉 is a data domain.

In common cases, both keys and values are modeled as strings (or
more generally as variable length byte arrays) to bring maximum
flexibility into the system. However, it is essential for LSM-trees
that the keys 𝐾 form an ordered set.

Figure 2: An LSM-tree of K + 1 components [6]

In a log-structured merge tree, data incoming to the system is
kept in the main memory and written to a write-ahead log for
persistence (Figure 2). Whenever this log in-memory and on-disk

exceeds a predefined size, a log rotation operation is triggered,
and a new log file and memory buffer pair is prepared for incoming
data. The data of the previous log is written into a new file on Level
1 (𝐿1) of the LSM-tree. When this is successful, the write-ahead log
on Level 0 (𝐿0) can be safely discarded, and the associated main
memory can be reused.

This way, the main memory needed to accommodate incoming
data is limited, and the individual file’s sizes do not exceed a prede-
fined threshold. If the system crashes, the log file can be replayed
to reconstruct the 𝐿0 data so that such systems support persistence
and recovery from faults. However, this system can now gener-
ate more and more files on 𝐿1, which are impossible to handle for
queries (and the file system and operating system) over time.

Therefore, a log-structured merge tree often foresees additional
levels obtained by a compaction operation. When the number of
files on a certain level exceeds a threshold, multiple files with over-
lapping key ranges from this layer are selected to generate one or
more files on a higher level. Commonly, the compaction operation
will merge the sorted files into new files of disjoint key ranges with
a designed maximal size for each. Consequently, throughout levels,
data with similar keys will end up in the same file after one or more
compactions, even if its insertion was scattered in time and thus
scattered over many different log files. Note that this compaction
operation can be elegantly implemented in a merge-sort without
much memory requirement and no random disk I/O.

Now, when keys are arriving uniformly at random at 𝐿0, all files
on this level and on 𝐿1 (which are just sorted versions of 𝐿0 log
slices) can contain information on a specific key and must, thus, be
scanned during queries. Hence, the complexity of querying for a
particular key is linear in the number of objects in the database. To
optimize this linearity at least a bit, the compaction operation aims
to reduce the number of data files that need to be examined for a
given query by reducing the key range of each file. This can lead
to efficient pruning of irrelevant files when querying for a specific
key or key range.

LSM-trees are ubiquitous nowadays; for example, the embed-
dable implementation LevelDB originating in Google is nowadays
in use as part of Google Chrome, as a backend to Riak, in Bitcoin
and Ethereum, Minecraft, and Autodesk AutoCAD. In addition to
this library, stand-alone databases employing LSM-trees include
Apache Cassandra, a distributed, high-performance key-value store
used by some major tech companies.

In the following, we generalize log merge trees to spatial data
in various ways. Therefore, it might be helpful to remind us of the
following facts about classical key-value log merge trees:

• The key range of every 𝐿0/𝐿1 file is expected to exhaust the
key space as the keys can arrive in uniformly random order.
• The compaction operation should not only merge files but
also split them. Otherwise, large gaps in the key space do
not pay off in queries.
• The system’s performance is primarily defined by the num-
ber of files needed to be examined for each query. However,
the number of files in the system can put pressure on real-
world implementations and must be kept small enough with
care.

BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA Teuscher and Werner

• The data structure is optimized for range browsing (finding
the minimum key followed by scanning) and lookup of exact
keys

We will discuss these facts during the generalization as point
clouds differ significantly from the simple one-dimensional case of
key-value stores.

3 The Point Cloud Log Merge Tree (PC-LMT)
and the Helena Point Cloud Database

This section introduces the Helena Point Cloud Database and its
operations. In addition, we cover the query semantics envisioned
for efficiently working with point clouds and a variant of a Log
Merge Tree infrastructure for managing point cloud data.

3.1 The Helena Point Cloud Database Life Cycle
In this section, we briefly introduce the Helena Point Cloud Data-
base operations along the data life cycle, which consists of one
or more applications from the following four larger families of
operations.

• init: initialize and configure a data space
• load: append data to the database
• query: retrieve data to the database
• maintain: plan and run maintenance steps, including merge,
split, index, and cleanup operations

The Init Operation. Firstly, the init function initializes a new
database. This encompasses creating a folder and associating se-
lected metadata with the database and an empty log. The most
crucial aspect to fix is the metadata of the point cloud representa-
tion, for example, information on geospatial projection and affine
placement of data. Finally, the data type for holding points is fixed,
and we prefer an integer representation for optimal compressibility
and memory efficiency.

The Load Operation. After initializing the database, the point
cloud database provides an API call load that appends points to the
log. Note that we explicitly do not expect the data to respect the
grid setting of the database. However, each load query can contain
only one grid. The grid specification is recorded in the log, followed
by the points.

When the log file contains a certain number of points allowed, a
log rotation is performed, and the in-memory points are reorganized
and written into a 𝐿1 file. This reorganization applies the PCL-DB
Grid Consolidation Algorithm to consolidate multiple grid systems
as described in Section 4.1. We decided for the 𝐿1 representation to
be HDF5 as it provides (1) a highly optimized storage system, (2)
support for attributes and slicing from disk, and (3) supports parallel
file systems in HPC environments, and (4) has built-in compression
support. Using any other storage container (e.g., flat file, binary,
etc.) is possible.

The Query Operations. The database allows the user to perform
queries of four categories:

• A point query to check whether a certain point is set in the
database and retrieve the storage location triple.
• A range query retrieving all points in a specified range.

• A importance sample query retrieving a specified frac-
tion or a specified number of points in a given range giving
(probabilistic) preference to “important” points.
• A random sample query retrieving a specified fraction or a
specified number of points in a given range, giving uniform
probability to all points.

Note that the first two operations are well-aligned with classical
use cases of LSM-trees. We can hope to quickly locate any item
based on its key, and we can expect data locality to improve along
the layer structure so that queries will be efficient.

The two latter queries, however, are entirely different from what
classical databases provide efficiently and counter-advocate data
locality as the only design principle. When point clouds grow large,
most of the points are not needed as points get their meaning from
the statistics of their surroundings, and thus, not all points are
required. For example, in visualization, there is commonly a point
budget of a few million points the user’s GPU can render in real
time. Also, in point cloud data mining and deep learning, the results
do not rely too much on data completeness.

The Maintenance Operations. The maintenance of the log merge
tree is performed as a background task called maintain that is
run periodically, event-based (e.g., on log rotation), or on explicit
administrator request. Four different maintenance tasks can be
distinguished:
• Reproject point cloud data from multiple grid systems to-
wards the single grid system prescribed in the init operation
• Merge, restructure, and split multiple files from a given level
of the LSM-tree into a higher level
• Replay the log after crashes
• Drop files that are not needed anymore

3.2 Probabilistic Query Semantics through an
Additional Attribute

As described before, data locality somewhat contradicts queries that
are supposed to return a sample of the query region. In previous
work, we have fixed a mechanism for embedding various such prob-
abilistic query semantics by integrating an additional dimension
to the data called importance (even if it is random) [10]. As such,
the importance is represented by values from a known range (e.g.,
0 . . . 1 for floating point coordinates, the full representable number
range for integer coordinates). For the remainder of the paper, we
will discuss the importance attribute in terms of the unit inter-
val, though it will often be technically represented as an integer
interval.

To support the various semantics of this variable, subranges of
the value range of this importance variable are to be associated
with a specific semantic. Therefore, we decompose the importance
attribute into disjoint intervals and associate a particular meaning
and order to the data represented in those.

The default approach decomposes the data into an importance
sample followed by multiple random samples.

𝐼 = [0, 1] = [0, 𝛼Importance] ⨿ 𝑆0 ⨿ . . . ⨿ 𝑆𝑚
In this representation, a parameter 𝛼importance models how much
data shall be organized according to visual point importance and
how many independent random samples 𝑆𝑖 are kept. Note that

PC-LMT: The Point Cloud Log Merge Tree for the Helena Point Cloud Database BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA

within each of those importance regions, the data on disk is orga-
nized in lexicographic order to maximize compression efficiency. In
contrast, we can optionally organize the importance sample ordered
by an importance value such that slices of the importance region
represent more or less important points.

The query algorithm needs to ensure that the query seman-
tics pertain to this representation; for example, we would expect
that random samples contain important points. As a convenience
function for the user, we propose a stratified reservoir sampling
algorithm for querying the database with a point budget in Section
4.5.

3.3 Physical Storage Layout
To comprehend the algorithms presented in the subsequent sec-
tion, knowing how the point cloud data is represented on disk is
essential. The physical storage layout for classical key-value-based
LSM-trees is comparably simple: data is represented as a sorted
sequence of key-value pairs called “run”. Each run can be individ-
ually indexed (e.g., using a B-tree) and compressed, and a Bloom
filter data structure can be leveraged to represent the set of keys
in every run. Finally, the key range (e.g., the minimal and maximal
keys in each file) is stored.

From this information, query processing first finds all files over-
lapping the query, checks the Bloom filter and index structures, and
then materializes the data from the disk.

The physical storage layout for our approach is a bit more com-
plex as we do not have a key-value structure to sort after. It would
now be easy to sort the data on disk by the importance dimension,
a crucial aspect for querying the data. However, this is inefficient
in terms of storage, especially for integer-rounded point clouds,
and it requires that we either store for each point its projection
information individually as the affine map placing the integer grid
in world coordinates will have to vary in large (e.g., continental
scale) datasets.

Therefore, we employ a hierarchical bucket sort storage order in
which we first sort by grid system, then by importance interval, and
inside each importance interval in a configurable manner, choosing
from:

• random storage order providing the fastest access to random
samples by slicing out pieces of the file,
• lexicographic storage order providing best compression,
• importance storage order providing slicing for the interval
𝐼Importance as well.

This storage layout has a scalability problem in terms of the number
of affine maps, and therefore, an affine compaction operation is
introduced, reducing the number of affine maps in the database
described in Section 4.4

4 Algorithms for Handling Point Clouds in
Log-Structured Merge-Trees

This section details the core algorithms designed to manage point
cloud data efficiently within an LSM-tree data structure. This in-
cludes algorithms for consolidation, merging, sorting, and tiling
strategies, as well as compaction and sampling approaches. Com-
bined, they seek to optimize the data structure and layout through

repartitioning for different use cases, analogous to creating a lay-
ered octree, commonly done for visualization purposes.

4.1 PCL-DB Grid Consolidation Algorithm
As described before, point clouds are commonly represented in a
grid-rounded fashion, where only integer coordinates are stored
referencing floating-point coordinates in arbitrary CRS through an
affine map consisting of translation, scale, and rotation, essentially
“placing” the integer grid in the real world.

For a database as described in this paper, this means that over
time, multiple grids will occur in the database, for example, a differ-
ent grid for each load operation. In the log, this can efficiently and
effectively be managed by putting the grid specification (e.g., the pa-
rameters of the affine map) into the log data stream, implementing
a stateful engine.

However, when consolidating the database with merge oper-
ations, spatial overlap might imply different grid systems in the
input data of a merge operation. At the same time, we expect the
output to be homogeneously represented in only one grid system
per output file.

This leaves us with two interesting algorithmic problems formu-
lated as follows:

Problem 1. Given a set of 𝑘 input point clouds, each with an asso-
ciated affine map 𝐴𝑘 , estimate a single grid affine map 𝐴 minimizing
the distortion of data in the 𝐴𝑘 .

This problem can be further complicated when we allow the
number of output affine maps to be non-zero.

Problem 2. Given a set of 𝑘 input point clouds 𝐶𝑖 , each with an
associated affine map 𝐴𝑖 , decompose the input points into 𝑙 ≤ 𝑘 point
clouds𝐶 𝑗 , each associated with its affine map𝐴 𝑗 such that the spatial
overlap of the 𝐶𝑖 is small.

This problem is more involved and cannot be generally solved
without background information. Therefore, we will only provide
a solution in the context of a prescribed global grid of affine maps
resembling a grid system for the underlying CRS.

This often requires a configured preference of grid placements
where one can easily imagine aligning the grid systems succes-
sively with grid systems for the world cover, including the UTM
coordinate grid, the Sentinel-2 grid, or the military grid system
(MGS). This way, data across otherwise isolated systems will find a
homogeneous representation.

4.2 The Point Cloud Merge Operation
During the system’s lifetime, loading data into the database gener-
ates a sequence of log files. Though some workloads (e.g., loading a
tiled set of files) have certain structures, we generally do not expect
any prior knowledge about the relation of the files. The merge
operation aims to restructure a certain number of files from some
level 𝑙 into a more structured, commonly smaller set of files on level
𝑙 + 1.

More concretely, the merge operation needs to solve the follow-
ing problem:

Problem 3. Given a log-structured merge-tree, the merge opera-
tion selects several files on a level 𝑙 and emits one or more files on
level 𝑙 and 𝑙 + 1.

BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA Teuscher and Werner

Multiple ways of selecting files are possible without prior knowl-
edge of the relations between files, leading to different advantages
and drawbacks.

In this paper, we select files based on the amount of overlap of
their bounding boxes. Then, a new file on a higher layer is computed
after selecting several files on one layer. For this, the following basic
strategies have been identified:
• union: all points are concatenated
• shuffle: all points are taken, but recorded in shuffled order
• lexicographic: all points are sorted in lexicographical order
over the configured dimensions
• dimension_monotonous: a selected dimension is used to
sort the points
• dartthrowing: all points are taken and ordered by impor-
tance such that at the beginning of the result file of themerge,
highly important points are recorded
• tiling: points are sorted into tiles as configured for the datas-
pace

Note that all of these operations generate a single data object.
Still, typically, themerge operation is chainedwith a tiling operation
described in the following subsection (4.3).

Subsequently, the strategies, as mentioned above, are described
in more detail, including discussing their properties, advantages,
and disadvantages.

4.2.1 The Union Strategy. The following algorithm precisely de-
fines the union strategy:

Given𝑚 files on layer 𝑘 , the merge operation with union strategy
emits one file on layer 𝑘 + 1 by concatenating the points from the
𝑚 files in lexicographic order of filenames (and, thus, in temporal

order).

The union strategy is a common baseline and excels in write
speed and implementation efficiency. When merging multiple files,
we read all input files and write to a single output file. Consequently,
we can efficiently implement this strategywith only two file handles
and a freely chosen amount of main memory for sequential reading
and writing a block.

However, depending on the order of the input files, this will
create artifacts and inefficiencies in higher layers as the data for a
specific type of query is scattered in the files depending on how the
data has been ordered at input time. For example, when the input
has a tiled structure commonly found in published point clouds, the
random selection of slices for the merge operation generates files
whose bounding boxes are largely overlapping. As a consequence,
range queries would have to read data in a random I/O fashion from
a high number of files.

Summary: The union strategy is the fastest regarding I/O. It is
reasonable only for database bulk loading where the input order has
been chosen wisely and shall be retained.

4.2.2 The Shuffle Strategy. The following algorithm precisely de-
fines the shuffle strategy:

The shuffle strategy is the opposite of the union strategy: it
removes any structures and artifacts introduced to the database
from point ordering or load operation ordering.

Given𝑚 files on layer 𝑘 , the merge operation with the shuffle
strategy emits one file on layer 𝑘 + 1 by concatenating the points

from the𝑚 files in shuffled order.

In terms of implementation, however, shuffling large datasets is
similarly complex to sorting data and requires a certain amount of
computational resources (memory, CPU, disk I/O). Furthermore, the
strategy is the worst regarding data compression, as discussed in
the evaluation. At the same time, random samples of point clouds
have a high user value in visualization and deep learning, and
shuffling part of the data can imply efficient queries as any block
of the shuffled data is a random sample of the inputs.

Summary: The shuffle strategy reduces artifacts introduced due to
ordering and random choice of slices. Furthermore, it makes queries for
random samples efficient. However, it requires quite some computation
and reduces the data compression ratio.

4.2.3 The Lexicographic Strategy. The following algorithm pre-
cisely defines the lexicographic strategy:

Given𝑚 files on layer 𝑘 , the merge operation with the
lexicographic strategy emits one file on layer 𝑘 + 1 by sorting the

input in lexicographic order along its data dimensions.

It is a bit counter-intuitive why we would want a lexicographic
order of point clouds: basic range queries, even with a small result
set, will lead to random input-output (I/O) as the last dimension is
spread across the whole file.

However, combining the fact that many point clouds are grid-
rounded, as implied by the LAS/LAZ file format, the lexicographic
ordering maximizes the nearby co-occurrence of sequences of co-
ordinates: in the first 𝑁 rows of a lexicographically ordered point
cloud from a grid, the first few coordinate axes are likely equal.
This leads to extraordinary compressibility of the file.

Summary: The lexicographic strategy introduces redundancy in
data blocks for best compressibility at the expense of random I/O for
most queries. It provides a good ordering for network transport.

4.2.4 The Dimension-Monotonous Strategy. The following algo-
rithm precisely defines the dimension-monotonous strategy:

Given𝑚 files on layer 𝑘 and a selected dimension (e.g., X, Y, Z, or
importance), the merge operation with dimension-monotonous
strategy emits one file on layer 𝑘 + 1 by stably sorting the points

from the𝑚 files by the selected dimension.

This strategy can be used for geometric slicing: When data is
ordered in an X-monotonous fashion, bounding boxes and range
queries in X dimension will be fast. Over multiple levels, an alternat-
ing pattern of X and Y monotonous ordering can be used. However,
the most likely approach is to use this strategy with the importance
dimension such that queries for small importance intervals near
zero can be answered from the beginning of the files.

4.2.5 The DartThrowing Strategy. The following algorithm pre-
cisely defines the DartThrowing strategy:

PC-LMT: The Point Cloud Log Merge Tree for the Helena Point Cloud Database BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA

Given𝑚 files on level 𝑘 and a dart radius, the DartThrowing
strategy runs a dart-throwing algorithm with the given parameter
and stores points in a way that, first, the points surviving the dart
throwing are stored, followed by the points that have been omitted
due to the dart throwing algorithm. An additional table represents

the ranges of surviving and non-surviving points.

This approach ensures that a good sample of the set of files given
is used and quickly accessible in the first file, while no data is lost
due to storing the “long tail” of the set of files in another file. It
would even be possible to drop those files if visualization is the
system’s only aim or to distribute the files to different nodes in a
distributed system.

4.2.6 Tiling Strategy. The following algorithm precisely defines
the tiling strategy:

Given𝑚 files on layer 𝑘 and a tiling grid (2D or 3D), the tiling
strategy generates a new file on layer 𝑘 + 1 ordered by tiles. In

addition to the points, a table of associations between point ranges
and tiles is stored.

This strategy can be considered a batched version of the dimension-
monotonous and lexicographic strategies where the values on the
dimensions are binned regarding the tiling grid.

4.3 Tiling Strategies
The merge operation turns 𝑘 input files into one logical output. Still,
this output will often be too large to be written in a single file or a
data distribution, where cutting the data into multiple files leads to
smaller file footprints. Therefore, the tiling operation follows the
merge operation, of which we list and discuss a few basic strategies
in the following.

Tiling can be based on
• fixed size: the intermediate data is cut into chunks of equal
size, each written to a different file
• external tileset: the data is written into tiles as described
in the dataspace
• internal tiling: the data is tiled in a promising dimension

4.3.1 The Fixed Size Tiling Strategy. This strategy splits files sur-
passing a configured upper bound for the file size into multiple
files of size with the bound. Through this, constraints from the
underlying storage system or available memory capacity can be
incorporated.

4.3.2 The External Tileset Tiling Strategy. This strategy follows a
predefined partition scheme analogous to space partitioning data
structures as present, for example, in spatial grid, quad- or octrees.
The benefit is a known tiling scheme, which can be optimized
further to specific query workloads when the data distribution is
known beforehand.

4.3.3 The Internal Tiling Strategy. This strategy follows a data-
driven approach similar to data partitioning in trees. As such, the
tiles emerge from splitting the data based on some derived statis-
tics. For example, split the bounding volume in the middle along
the longest edge. The benefit of this strategy is that it will result

in tiles of data with compact bounds adapted to the overall data
distribution.

4.4 Affine Compaction Algorithm
Over time, loading a point cloud database from large collections
of geospatial point clouds introduces many different affine grid
systems into the database, limiting the organizational flexibility
concerning data storage and putting a constraint on the efficiency
of querying.

Therefore, this section introduces an algorithm called Affine
Compaction, which collects multiple files in one layer with over-
lapping data from numerous affine projections and reorganizes
them into multiple files with fewer projections per file. This opera-
tion does not elevate levels.

In addition, the maximal representation error of merging two
affine maps is computed based on the bounding boxes, and an
overall threshold is used to decide if a single one can replace the
two representations. Immediately, two variants do exist, which
behave differently in different workloads: in a majority strategy,
the idea of merging two affine maps would merge the one with
fewer points into the one with more points; in a mean merge, a new
affine map is needed which minimizes the grid rounding distortion
for both grids. As a third aspect, log merge trees shall converge to
highly structured data through levels, such that we can also choose
the best affine map in terms of distortion to a preconfigured affine
map for the whole database. The latter has a clear advantage: a
sequence of affine merge operations cannot accumulate small errors
into a large one.

4.5 Stratified Reservoir Sampling for Count
Limits on Query Results

In point cloud data management, an essential operation is generat-
ing random samples or importance samples of all data matching
a query predicate. In this setting, it is most intuitive for the user
to specify a point budget and to expect a good sample of the data
fulfilling the query predicate being smaller than or equal to the
given budget.

Given that the importance dimension is cut into slices of different
semantics, we need to design a sampling algorithm that ensures
that all slices of the importance dimension contribute fairly to the
query result.

Problem 4. The Stratified Reservoir Sampling Problem is
given a point budget 𝑁 , a set 𝑆𝑖 of 𝑘 point clouds (e.g., our disjoint
slices in the importance dimension) and returns a point cloud 𝐶𝑖 such
that |𝐶𝑖 | ≤ 𝑁 and the probability of a point being from a slice 𝑆𝑖
shall be near 1

𝑘
.

This problem is comparably involved as the amount of points in
the slices can differ. A first idea for an algorithm would be based
on the concept of first computing (on the server side) the entire
query and then constructing the random sample by sampling 𝑁 · 1

𝑘
points from every slice. However, slices can be of different sizes,
and it might be that some slices are even smaller than 𝑁 · 1

𝑘
.

In these cases, the result set can be returned, or an optional
round-robin fill algorithm can be used.

More precisely

BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA Teuscher and Werner

Algorithm 1 Stratified Reservoir Sampling with Budget Comple-
tion

procedure sample_reservoir(N,𝑆1 . . . 𝑆𝑘 ,P)
𝑅 = ∅
for 𝑖 = 1 . . . 𝑘 do

// compute shuffled subqueries
𝐶𝑖 ← Shuffled (Query(𝑆𝑖 , 𝑃))
𝐻𝑖 ,𝑇𝑖
𝑅 = 𝑅 ∪ (firstN,𝐶𝑖)

end for
// plan the amount of points per slice
𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑃𝑡𝑠

end procedure

5 Evaluation
This section illustrates selected experiments from a proof of con-
cept implementation. As such, they focused on exemplifying and
validating the feasibility of concepts and approaches presented in
this paper. Comparison with state-of-the-art systems, including
quantitative performance metrics, are planned for the future once
a proper implementation is available.

The datasets used in the following are subsets of the Actueel
Hoogtebestand Nederland (AHN). All experiments are conducted
on a mobile computer with 8 cores (16 threads), 32GB memory, and
1TB SSD storage.

5.1 Load Performance
The LSM-tree data structure is known for offering high write per-
formance. While the ingested data can be kept in memory, it has
to be spilled to persistent storage at some point. That gives us two
upper limits: for one, write speed, including serialization and com-
pression, and second, the read speed, including deserialization and
decompression.

Our test case of reading LAZ files from the SSD into memory
and writing to LAS or LAZ from memory to SSD resulted in a
throughput of about 20 million points per second. This gives us an
upper limit for data ingestion, which is exhausted and sustained
in the load operation of our proof of concept, even when applying
grid rounding on the fly.

5.2 Point Representation
In Figure 3, we plot the relative size of different point represen-
tations and formats. As a baseline, we use NumPy, which gives
us the uncompressed on-disk and in-memory sizes of the native
data types. This is compared against an HDF5 container with auto
chunking and gzip compression, once with random ordered points
(middle) and once with lexicographically sorted points (right). As
payloads, we generated 5 million points, once with three normally
distributed double precision coordinates in the range 0 to 1 (blue),
once with normally distributed integers over the total value range
(orange), and once with the upper range set to 2 million (green).

The results show that sorting is indeed beneficial for the compres-
sion ratio. Interestingly, this effect gets heightened when limiting
the integer range to 2 million, resulting in about a 20% space de-
crease in the random case and up to 40% decrease in the sorted

Figure 3: Storage footprint and compression efficiency for
different coordinate representations.

case compared to the uncompressed size. Although the data in this
experiment is synthetically generated, the latter represents a grid-
rounded approach that can cover a cube with a 2000-meter edge
length with millimeter precision. Due to the internal representation
of floating point numbers, their value range does not substantially
influence the compression ratio.

5.3 Data Layout
Figure 4 depicts the spatial footprints of the files on different levels.
We used an LAZ file from the AHN3 aerial laser scan as input. Upon
the loading operation, we see that the scan lines are cut into pieces
by the log rotation on Level 0 (left). After a merging operation with
the union strategy, we end up with fewer though larger files on
Level 1 (middle). Finally, through an internal tiling strategy, we end
up with nonoverlapping files on Level 2 (right).

Figure 4: Spatial footprint of (log)-files on different levels.
Level 0 files after the load operation (left), after a merge
operation on Level 1 (middle), and on Level 2 (right) after
tiling.

From the spatial footprints, it becomes evident that one can
expect range queries to become more efficient as individual files
are more compact, which allows for pruning outside the query
extent. With this, we show that it is possible to end up with a data
organization that resembles space-partitioning similar to the leaves
in an R-tree or quadtree.

PC-LMT: The Point Cloud Log Merge Tree for the Helena Point Cloud Database BigSpatial’24, October 29-November 1, 2024, Atlanta, GA, USA

6 Discussion
This section discusses our approach in the context of traditional
point cloud data management and processing and current research
and development trends.

6.1 Arbitrary Space Partitioning
With our proposed approach, space partitioning methods like grids,
space-filling curves, and quad- and octrees can be represented. This
can be facilitated for static datasets bymerely describing an external
tileset definition accordingly and applying a tiling operation if
the extent is known upon initialization. For dynamic datasets or
streams, where the full extent is unknown, one approach is to
describe an external tileset in terms of levels and deltas. In this
scenario, levels are the layers of the tree, respectively, the fixed
value ranges of the associated dimension. Deltas are the cell size
of the remaining dimensions per level. From an even more generic
view, we can support arbitrary space partitioning by defining a
function that maps points to partitions 𝑓 : 𝑃𝑜𝑖𝑛𝑡𝑠 ↦→ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 .

6.2 Workflow Conversion
Analogous to the example of arbitrary space partitioning, almost
any existing processing workflow to process point cloud data can
be facilitated in our proposed setup. This is true if we can formalize
a workflow as a transformation function that takes a point cloud
as input and returns a point cloud. Then, we can write the input
upon reading to level 0, define the function as a maintenance opera-
tion, apply it, and write the output to the next level. Of course, this
somewhat invalidates the usefulness of an LSM-tree in the extreme
case of waiting for the whole function to be processed until we can
transition to the next level. Nevertheless, most workflows target-
ing large datasets operate in a streaming, multi-stage pipeline, or
batch-processing fashion. Such workflows offer great potential to
be handled within an LSM-tree as single processing steps can be
extracted as multiple maintenance operations and results can be
made accessible on intermediate steps and iteratively change the
level.

6.3 Related Work
While LSM-trees and similar concepts are well-researched, they
have never been explicitly applied to point cloud or geospatial data
to our knowledge. One explanation is that the inner workings of
LSM-trees are generally not exposed to the user directly but hidden
in database management systems. One exposure in this direction
can be found in Apache Iceberg, where users can control, to some
extent, the table’s partitioning scheme. Another explanation is that
workflows for data processing, often described as pipeline opera-
tions, run in a streaming or batch-processing fashion. Even though
this is somewhat similar to the operations applied in this paper,
the approach presented makes data accessible for the final use case
right after ingestion and continuously while processing, moving to
higher levels.

The intrinsic characteristics of LSM-trees, mainly high read
throughput with subsequent data layout refinement while offering
query capabilities upon ingestion, seem to gain emerging interest.
Recently, SimLOD was presented as an approach to simultaneously

build an octree for levels of details and render point clouds while
loading from disk[8].

7 Conclusion and Outlook
This paper investigates the log-structured merge-tree (LSM-tree)
data structure for point cloud datamanagement. As such, we present
the Point Cloud Log Merge Tree (PC-LMT), comprising the defini-
tion for grid-rounded point representation and customized algo-
rithms for merge, tiling, and compaction operations. These adapta-
tions of key aspects of an LSM-tree reveal the feasibility of point
cloud data management. Its flexibility exhibits great potential to
adapt to various use cases, as numerous dedicated point cloud data
structures can be reproduced in a unified framework. The concept’s
soundness is successfully validated in a proof of concept, and we
are excited to further explore and develop this promising approach.

Focus areas for the near future are to extend the implementa-
tion in terms of features and performance and target a distributed
version thereof. Another area is integrating existing systems and
components, for example, making them mappable to existing key-
value stores.

References
[1] Howard Butler, Bradley Chambers, Preston Hartzell, and Craig Glennie. 2021.

PDAL: An open source library for the processing and analysis of point clouds.
Computers & Geosciences 148 (March 2021), 104680. https://doi.org/10.1016/j.
cageo.2020.104680

[2] Robert L. Cook. 1986. Stochastic sampling in computer graphics. ACM Transac-
tions on Graphics 5, 1 (Jan. 1986), 51–72. https://doi.org/10.1145/7529.8927

[3] Martin Isenburg. 2013. LASzip: lossless compression of LiDAR data. Photogram-
metric Engineering and Remote Sensing (2013).

[4] Chamin Nalinda Lokugam Hewage, Debra F. Laefer, Anh-Vu Vo, Nhien-An Le-
Khac, and Michela Bertolotto. 2022. Scalability and Performance of LiDAR Point
Cloud Data Management Systems: A State-of-the-Art Review. Remote Sensing
14, 20 (Oct. 2022), 5277. https://doi.org/10.3390/rs14205277

[5] Chen Luo and Michael J. Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (Jan. 2020), 393–418. https://doi.org/10.1007/s00778-019-
00555-y

[6] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (June 1996), 351–385.
https://doi.org/10.1007/s002360050048

[7] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. (2017).

[8] Markus Schütz, Lukas Herzberger, and Michael Wimmer. 2024. SimLOD: Simul-
taneous LOD Generation and Rendering for Point Clouds. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 7, 1 (May 2024), 1–20.
https://doi.org/10.1145/3651287

[9] Markus Schütz, Stefan Ohrhallinger, and Michael Wimmer. 2020. Fast Out-of-
Core Octree Generation for Massive Point Clouds. Computer Graphics Forum 39,
7 (Oct. 2020), 155–167. https://doi.org/10.1111/cgf.14134

[10] Balthasar Teuscher and Martin Werner. 2024. Random Data Distribution for
Efficient Parallel Point Cloud Processing. AGILE: GIScience Series 5 (May 2024),
1–10. https://doi.org/10.5194/agile-giss-5-15-2024

https://doi.org/10.1016/j.cageo.2020.104680
https://doi.org/10.1016/j.cageo.2020.104680
https://doi.org/10.1145/7529.8927
https://doi.org/10.3390/rs14205277
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/3651287
https://doi.org/10.1111/cgf.14134
https://doi.org/10.5194/agile-giss-5-15-2024

	Abstract
	1 Introduction
	2 Background
	2.1 Point Clouds
	2.2 Importance in Point Clouds
	2.3 Log Merge Trees in Big Data

	3 The Point Cloud Log Merge Tree (PC-LMT) and the Helena Point Cloud Database
	3.1 The Helena Point Cloud Database Life Cycle
	3.2 Probabilistic Query Semantics through an Additional Attribute
	3.3 Physical Storage Layout

	4 Algorithms for Handling Point Clouds in Log-Structured Merge-Trees
	4.1 PCL-DB Grid Consolidation Algorithm
	4.2 The Point Cloud Merge Operation
	4.3 Tiling Strategies
	4.4 Affine Compaction Algorithm
	4.5 Stratified Reservoir Sampling for Count Limits on Query Results

	5 Evaluation
	5.1 Load Performance
	5.2 Point Representation
	5.3 Data Layout

	6 Discussion
	6.1 Arbitrary Space Partitioning
	6.2 Workflow Conversion
	6.3 Related Work

	7 Conclusion and Outlook
	References

