
Calculating Upstream Relation in Spatial Networks Under Path
Constraints

Wejdene Mansour

Professorship of Big Geospatial Data Management

Technical University of Munich, Germany

wejdene.mansour@tum.de

Martin Werner

Professorship of Big Geospatial Data Management

Technical University of Munich, Germany

martin.werner@tum.de

Abstract
Assessing the resilience of utility networks and ensuring human

safety in indoor environments during emergencies relies on the

identification of the upstream relation in a spatial network. This

concept is essential for detecting vulnerabilities and maintaining

operational continuity in the event of unforeseen disruptions by

finding alternative paths under various constraints and accessibility

restrictions. As spatial networks grow increasingly complex, it is

no longer practical to comprehensively analyze all paths within a

spatial semantic graph, e.g., in applications related to geographic

information systems and navigation services. This paper presents

a novel computational method–different from the conventional

biconnected components–for analyzing spatial networks indepen-

dent of any number of constraints. The defined approach employs

a fast graph search algorithm based on shortest path queries with

increasing graph weights. It integrates the constrained shortest

path search with weighted edges and a parallelized linear search

scalable to large networks. Unlike Block-Cut trees, our algorithm

efficiently determines the upstream relation with directly embed-

ded path constraints by identifying all simple paths that fulfill the

specified constraints without entirely reconstructing the graph.

We demonstrate our solution’s efficiency across two infrastruc-

ture networks: a critical utility network and an indoor navigation

map with different path constraints. The source code is available at

https://github.com/tum-bgd/2024-sigspatial-upstream

CCS Concepts
• Theory of computation → Graph algorithms analysis; •
Mathematics of computing→ Graph theory; • Computing
methodologies→ Parallel algorithms.

Keywords
Spatial Networks, Graph Analysis, Path Constraints, Shortest Path

ACM Reference Format:
Wejdene Mansour and Martin Werner. 2024. Calculating Upstream Relation

in Spatial Networks Under Path Constraints. In The 32nd ACM International
Conference on Advances in Geographic Information Systems (SIGSPATIAL ’24),
October 29-November 1, 2024, Atlanta, GA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3678717.3691288

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1107-7/24/10

https://doi.org/10.1145/3678717.3691288

1 Introduction
The analysis of spatial networks has a long history and covers a

variety of networks that are vital to the functioning of our modern

society [2]. Nowadays, we have access to a large variety of such spa-

tial graph datasets from diverse fields and with a wide range of sizes

and complexities [22]. Especially interesting spatial networks are

given by utility networks [15], including gas, water, and electricity

supply networks, along with mobility networks, like road networks,

train networks, and multimodal transport systems [19, 23]. Beyond

traditional infrastructure, emerging location-based social networks

and mobile communication networks provide a georeferenced net-

work structure with intriguing properties [16]. In addition, spatial

networks have been derived from popular video game maps such

as StarCraft II [4], as well as floor plan maps of airports, office build-

ings, and university campuses [12, 31]. The latter types of graphs

pose additional challenges for spatial analysis as their complexities

are highlighted in their non-standard features, such as the presence

of teleporters, elevators, multi-level structures, or restricted areas,

affecting their connectivity and navigation.

Many of these networks provide services essential to the well-

being of our societies and can be seen as examples of critical

infrastructure—key services vital to the functioning of a country

and its society [13, 17, 30]. Indoor maps of public spaces like air-

ports and commercial buildings are characterized by high traffic,

and the safety and security of visitors must be ensured at all times.

These maps must be constantly evaluated for emergency response

planning and efficient evacuation routes [24, 32], which can be

effectively done using spatial graph analysis.

The impact of changes to a network on its overall functionality

is often called resilience. However, the increasing flexibility and

complexity of spatial networks means that it is no longer possi-

ble to understand their underlying connectivity. This hinders the

assessment of the network’s resilience and the development of con-

crete proposals to improve it. Due to their central meaning, it is

increasingly important to analyze such spatial networks with the

help of computational methods.

Since the components of utility networks fail on a regular basis,

wemust ensure that their overall design prevents these local failures

from impacting the entire network in an uncontrolled manner. One

significant example of badly designed resilience, which could have

been routinely checked with upstream analysis, was the power

outage in Berlin Köpenick. This incident resulted in more than

30, 000 households being disconnected from the electricity network

for about 30 hours [18]. In this scenario, both the main cable and the

backup cable were accidentally destroyed at the same time during

construction work. The cause behind this is that both cables had to

cross the same bridge—a problem for network resilience.

https://orcid.org/0009-0008-4362-2092
https://orcid.org/0000-0002-6951-8022
https://github.com/tum-bgd/2024-sigspatial-upstream
https://doi.org/10.1145/3678717.3691288
https://doi.org/10.1145/3678717.3691288

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Mansour and Werner

Building information modeling plays a critical role during the

design phase and pre-construction stages of buildings to ensure that

all security measures are adequately addressed. The tragic incidents

in India and Bangladesh that resulted in numerous fatalities due

to the absence of fire exits in large indoor spaces demonstrate the

importance of proper planning of emergency evacuations relative

to building size and its occupancy [1, 3]. Additionally, the many

security lapses in airports, where restricted access areas were by-

passed by passengers, have led to multiple breaches [25], prompting

many airports to implement access control systems [29]. These ex-

amples highlight the importance of ensuring that indoor floor plans

comply with safety requirements, guarantee operational efficiency,

and eliminate security vulnerabilities.

One useful computational method for this type of analysis is the

so-called upstream relation. To compute this relation, we first

identify two sets of features in the network: the starting points

and the controllers. The upstream relation is defined as the set of

features of the graph, i.e., edges and vertices, for which a simple path

between a start and an end feature exists. In other words, we are

interested in finding the set of simple paths that connect starting

points with controllers inside the network. These simple paths

consist of network elements represented as vertices or edges in the

graph. In a real-world example, this resembles the subnetworks

that can be used to transport resources (energy, gas, water, etc.)

between any consumer (starting point) and supplier (controller).

Given the upstream relation of a network, one can analyze how

versatile and resilient an infrastructure is in case of faults. For the

Berlin outage example, the controller would have been all available

power plants within a sensible distance, and the starting points

would have been any place inside Köpenick, for example, the town

hall. While the upstream relation would have included many re-

dundant paths to support this city, it would have also shown a

bottleneck near the bridge.

On the other hand, the upstream relation is very interesting in the

context of building floor plan design. Indeed, path constraints are

highly relevant in real-world applications like airport management,

where access points have certain accessibility restrictions. In this

case, the upstream relation can help optimize passenger and airport

personnel flow, improve emergency response planning to ensure

visitor safety and comply with security protocols determined by

individual security clearances. For instance, one can easily verify

that newly integrated access control constraints do not hinder

the workflow of an airport, as well as ensure compliance with

emergency response protocols.

In 2018, the 26th ACM SIGSPATIAL conference highlighted this

problem through its annual algorithm competition, GIS Cup, focus-

ing on the challenge of identifying upstream features in large spatial

networks [21]. The motivation behind the task was to analyze the

electrical network of Naperville with respect to the upstream rela-

tion to help locate critical infrastructure assets. All three winning

algorithms [11, 20, 28] in this competition used the concept of bi-

connected components to quickly infer the upstream, which was

mainly motivated by its adequacy and computational efficiency.

This paper presents a novel and reasonably quick approach to

identifying upstream features in the network, given a set of con-

trollers, a set of starting points, and path constraints. In addition,

we explain how this foundational configuration can be extended to

deal with edges as starting points as well as with the resolution of

special cases and vertices in the upstream relation. In contrast to

the winning algorithms, however, we propose to actually compute

a set of simple paths, which allows us to include path constraints

like capacity or path length in the analysis. This is not easily fea-

sible after compressing the graph into a simpler structure called

the Block-Cut tree (BC-tree). A BC-tree highlights key connectivity

features extracted from the decomposition of a graph into its bicon-

nected components and articulation points. Nonetheless, thanks

to their computational efficiency, existing BC-tree approaches can

be effectively applied to prune large networks prior to applying

constraints.

The remainder of the paper is structured as follows: In the next

section, we define the upstream relation problem, discuss the gen-

eral idea of the BC-tree-based solution, and introduce relevant

shortest path algorithms. In Section 3, we derive our algorithm

based on shortest path queries and present efficient implemen-

tation strategies to minimize computational effort. This section

concludes with an illustrative example of the iterative process to

compute the upstream relation and details how path constraints

are integrated. Section 4 covers methods for efficiently processing

large constrained graphs, while Section 5 addresses the handling of

special cases. Following this, we evaluate the performance of our

algorithm in Section 6 and demonstrate its importance in handling

constraints in Section 7 using a constrained navigation problem on

a university campus. Finally, Section 8 concludes the paper.

2 Problem Definition and Background
2.1 The Upstream Relation
Let us revisit the concept of the upstream relation [21]. To formalize

this, we begin by establishing the appropriate notation and defin-

ing the problem we seek to solve, namely querying the upstream

relation of a tuple (𝐺 (𝑉 , 𝐸) , 𝑆,𝐶):
Problem 1. Given a directed or undirected graph 𝐺 (𝑉 , 𝐸) com-

posed of a set of vertices 𝑉 and edges 𝐸, a subset of vertices and edges
serving as starting features of the search 𝑆 ⊆ (𝑉 ∪ 𝐸), and another
subset of vertices serving as controllers𝐶 ⊆ 𝑉 , enumerate all upstream
features, i.e., edges and vertices, with respect to the start features and
controller vertices.

To clarify the upstream relation, we first define what is consid-

ered an upstream feature in this context:

Definition 1. A feature, edge or vertex, 𝑓 ∈ (𝑉 ∪ 𝐸) is upstream
if it is part of a simple path from any start feature 𝑠 ∈ 𝑆 to any
controller 𝑐 ∈ 𝐶 .

For completeness and to better understand what constitutes a

simple path:

Definition 2. A path in a graph is set to be simple if it does not
have self-intersections – that is, it does not contain a certain vertex
more than once.

2.2 BC-Tree Solution
This simple definition of upstream relation is closely related to the

graph concept of biconnected components, which helps understand

the connectivity and structure of the graph. The significance of this

Calculating Upstream Relation in Spatial Networks Under Path Constraints SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

c2

s1

c1

(1) Graph decomposition into biconnected
components

c2

s1

c1

(2) Reduction of the components into the
Block-Cut tree

c2

s1

c1

(3) Upstream features between the starting
point and controllers highlighted in red

Figure 1: Solution of the upstream relation in an example utility network between a starting point 𝑠1 and two controllers 𝑐1
and 𝑐2. The upstream relation is computed based on the idea of biconnected components and Block-Cut tree.

concept can be clearly noted in the three winning GIS Cup submis-

sions, each of which specifically implemented this idea [11, 20, 28]

while integrating additional steps to enhance runtime performance.

An illustration demonstrating the effectiveness of this approach

in solving this challenge is provided in Figure 1. A biconnected

component denotes a connected subgraph such that there exist two

distinct paths between any pair of vertices within this subgraph. In

other words, the subgraph remains connected regardless of which

single vertex we remove. For this reason, we must identify bridges

and articulation points, or cut vertices, responsible for potentially

disrupting the graph connectivity. Each biconnected component is

highlighted in a different color in (1), with cut vertices having the

colors of the different biconnected components they belong to.

Since any vertex within a biconnected component is always

reachable without leaving the component, a biconnected compo-

nent is either completely contained inside the upstream or entirely

outside of it. Consequently, it makes sense to partition the graph

into its biconnected components and reduce them to a single node,

resulting in a compressed tree structure: the BC-tree. Given this

BC-tree in (2), the upstream relation is straightforward to calculate

due to the fact that trees inherently lack loops: all tree blocks along

the path from the starting point block and the controller block are

upstream. In the final step (3), we uncompress the BC-tree, and all

features within an upstream tree block are also upstream.

The conventional algorithm for generating this tree is based on

depth-first search and is known as Tarjan’s algorithm [27], which

runs in linear time. Parallel implementations of this algorithm ex-

ist, achieving sublinear time complexities [26], with significant

speedups being achieved with parallel implementations [6].

However, a significant shortcoming of this method is the fact

that path properties within biconnected components might be non-

uniform. Consequently, when attempting to extend these algo-

rithms to include constraints on the paths, the internal structure

of each biconnected component must be evaluated again, and the

benefit of first decomposing the graph into these components is

potentially lost. Therefore, in our paper, we tackle this limitation

by proposing to take a more direct approach. This is realized by im-

plementing a structured search of shortest paths to identify simple

paths, proving that a given feature is upstream.

2.3 Shortest Path Algorithms
Computing shortest paths is a longstanding computational chal-

lenge. In this context, several concrete problems must be distin-

guished: All-Pair Shortest Path, also known as Multiple Source

Shortest Path (MSSP), Single Source Shortest Path (SSSP), and de-

termining the shortest paths between two given points.

MSSP algorithms, such as the Floyd-Warshall algorithm [9], cre-

ate a distance matrix between all nodes according to network dis-

tance. This distance matrix can be used to compute the shortest

path between any two pairs of vertices using a sequence of table

lookups.

Given a starting point, the SSSP problem computes the distance

and shortest path to any other node. The most prominent example

of such an algorithm is Dijkstra’s algorithm [5], which serves as

the foundation for all modern shortest-path algorithms. In order to

not store all the paths that come up, it uses two properties assigned

for each vertex: the distance and the predecessor vertex. A shortest

path is then constructed by following the predecessor’s stored at

each vertex. From an algorithmic point of view, it is needed to

show that the shortest paths are, in fact, shortest, and this is done

by maintaining three sets of vertices often represented by colors.

The white vertices represent nodes that have not yet been seen

by the algorithm; the gray vertices denote nodes that have been

visited at least once but for which the shortest path is yet to be

discovered, i.e., nodes that are currently in the queue; and the black

set of vertices for which we know that no shorter path can exist.

Using a priority queue, the algorithm traverses the tree, filling in

the three properties: color, distance, and predecessor.

In fact, the shortest path between two points often involves

solving the all-pair shortest path problem for either one or both of

the points in parallel. However, to optimize its efficiency, we refine

the algorithm to avoid exploring irrelevant sections of the graph

for which we can easily conclude that they will not contribute to

the shortest path.

Among the notable variants of Dijkstra’s algorithm is the A*

(A star) algorithm [14], which uses the triangle inequality as a

lower bound to the distance, thereby disregarding vertices that

are too far away. Another significant approach, the A*, Landmarks

and Triangle (ALT) algorithm [10], precomputes the distance map

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Mansour and Werner

for select vertices, typically placed at the borders of the graph.

By utilizing the triangle inequality as well, the ALT algorithm

achieves a tighter lower bound than the A* algorithm. Additionally,

contraction hierarchies add shortcuts to the graph based on several

proposed schemata such that shortcuts can be used to jump over

larger subgraphs occurring along a path. For example, in a scenario

where a village has a single road entering and another road exiting,

this configuration can be jumped over as if it was a single vertex.

Furthermore, the nature of street networks is often exploited in

such hierarchies. For example, we consider the Mississippi River,

where only a handful of roads cross the river. In such cases, each

coast-to-coast travel can be decomposed into a few shortest path

computations on the two graph sections on either side of the river. In

fact, a contraction hierarchy would finally start with identifying the

correct bridge and then descending one level to refine the shortest

path on both sides of the bridge.

Given that the upstream relation can be computed in any arbi-

trary graph, which might be dynamic, we propose to use the ALT

search algorithm instead of contraction hierarchies. Indeed, in this

case, these graphs are subject to changes not only in weights but

also in topology. This technique is characterized by its fast per-

formance and minimal preprocessing overhead, which consists of

only a few Dijkstra searches, and it is compatible with increasing

edge weights. Furthermore, we identify ideal landmark candidates

for real-world upstream relations, namely the controllers and the

starting points.

3 Enumerating Upstream Edges
The fundamental concept of this algorithm is to enumerate the paths

that prove the upstream relation. Specifically, the basic algorithmic

idea is to iterate over each edge of the graph and determine whether

a simple path containing this edge exists. For ease of exposition,

we focus solely on the case of upstream edges, as handling vertices

involves a straightforward enumeration of special cases. In order to

reach useful performance, we introduce efficient pruning strategies

to avoid unnecessary computations.

3.1 Algorithm Derivation
Based on the definitions provided in Section 2.1, we want to find

all edges part of a simple path between a starting feature and a

controller. With this task in place, we can formulate the basic ob-

servation on which our algorithm is based as follows:

Lemma 1. An edge 𝑒 = (𝑝, 𝑞) is upstream if and only if there is a
shortest path𝑇 from some starting point 𝑠 to 𝑝 (resp. 𝑞) and 𝑎 shortest
path 𝑅 from the other point 𝑞 (resp. 𝑝) to some controller 𝑐 in 𝐺 with
all edges adjacent to 𝑇 removed.

Proof. Shortest paths are simple paths. Hence, both paths𝑇 and

𝑅 are simple.𝑇 and 𝑅 are disjoint as 𝑅 is computed in the subgraph

of 𝐺 with all edges adjacent to 𝑇 being removed. Therefore, the

concatenation [𝑇, 𝑒, 𝑅] is simple as well. Conversely, let 𝑒 be an

edge and let𝑇 be a simple path from a starting point 𝑠 via 𝑒 to some

controller 𝑐 . Then, the paths 𝑠 → 𝑒 and 𝑒 → 𝑐 are disjoint. Hence,

𝑒 → 𝑐 is a path in the subgraph 𝐺 \ {𝑠 → 𝑒}. Consequently, the
set of such paths is non-empty and, therefore, contains a smallest

element, the shortest path. In summary, given a simple path, we

can conclude that there is a pair of shortest paths, as shown in the

lemma. □

While this observation specifically covers the edges case, we

believe it represents the most intuitive formulation of how the up-

stream relation can be computed using shortest path queries on

graph G and on certain subgraphs with only increased weights.

For instance, setting the weights of adjacent edges to the path 𝑇 to

infinity is equivalent to removing the edge, but simplifies the com-

putational processes as no updates to the adjacency list structure

are required. Subsequently, as we elaborate later in the paper, the

upstream features can be extracted from the problem record and

the set of upstream edges.

This leads to a basic algorithm for the decision problem of

whether a given edge is upstream with relation to a specific pair

of a starting feature and a controller. Note that this method can be

used in isolation; in other words, we can apply it independently to

a single edge when examining the significance of a local edge in

relation to a specified set of controllers and starting points.

Algorithm 1 The Decision Algorithm

Input: Graph 𝐺 , Edge 𝑒 = (𝑝, 𝑞), Starting point 𝑠 , Controller 𝑐
Output: Upstream status of edge 𝑒

1: compute these combinations of shortest paths:

𝑃1,1 : 𝑠 → 𝑝 in 𝐺 and 𝑃2,1 : 𝑞 → 𝑐 in 𝐺 \ {𝑠 → 𝑝} (1)

𝑃1,2 : 𝑠 → 𝑞 in 𝐺 and 𝑃2,2 : 𝑝 → 𝑐 in 𝐺 \ {𝑠 → 𝑞} (2)

𝑃1,3 : 𝑐 → 𝑝 in 𝐺 and 𝑃2,3 : 𝑞 → 𝑠 in 𝐺 \ {𝑐 → 𝑝} (3)

𝑃1,4 : 𝑐 → 𝑞 in 𝐺 and 𝑃2,4 : 𝑝 → 𝑠 in 𝐺 \ {𝑐 → 𝑞} (4)

⊲ for 𝑃2,∗, set edges adjacent to 𝑃1,∗ to infinite weight

2: if (𝑃1,1∧𝑃2,1) ∨ (𝑃1,2∧𝑃2,2) ∨ (𝑃1,3∧𝑃2,3) ∨ (𝑃1,4∧𝑃2,4) then
3: return true ⊲ 𝑒 is upstream

4: else
5: return false ⊲ 𝑒 is not upstream

This algorithm is employed in the upstream analysis process by

iterating over all edges and invoking the decision algorithm.

Algorithm 2 Enumerating Upstream Edges

Input: Graph 𝐺 (𝑉 , 𝐸), Starting points 𝑆 , Controllers 𝐶

Output: Property map on edges 𝐸 with upstream status

1: for 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 do
2: invoke decision algorithm on 𝑒:

3: if isUpstream(𝐺, 𝑒, 𝑠, 𝑐) then
4: upstream[𝑒] ← true ⊲ 𝑒 is upstream

5: else
6: upstream[𝑒] ← false ⊲ 𝑒 is not upstream

7: return upstream

Algorithm 2 presents the baseline iterative process over all edges

and is, therefore, neither optimized nor parallelized. Additionally,

the proper handling of constraints must be further introduced.

Calculating Upstream Relation in Spatial Networks Under Path Constraints SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

3.2 Implementation Details
Each of these decisions is based on evaluating a shortest path pred-

icate in the graph eight times, half of which get evaluated in the

same graph with possibly higher edge weights. In addition, the set

of possible end points of these graphs is exclusively limited to the

union of 𝑆 and𝐶 . Therefore, a landmark search engine [10] with the

landmark set 𝑆 ∪𝐶 is a good fit for this problem as long as this set is

reasonably small. If it is not, some of the various landmark selection

schemes can be used in order to prepare only a few landmarks, but

in most cases, the set will be small in practice.

In the case that the set is small enough such that every element

of 𝑆∪𝐶 becomes a landmark, we can simplify the potential function

of ALT to only use the goal distance from the distance map.

Implementation 1. We implement the presented algorithm using
a variant of landmark search in which each element of 𝑆∪𝐶 becomes a
landmark and, consequently, the landmark search is most efficient for
paths involving 𝑆 and 𝐶 . In addition, it returns the generated simple
path composed of both shortest path segments for further processing.

For the correctness of this algorithm, in general, we should re-

mark that the algorithm uses a constant-zero landmark in cases

where a shortest path is queried which does not start or end in

𝑆 ∪𝐶 and, thus, degenerates to a Dijkstra search. For the upstream

relation, however, this cannot happen.

3.3 Optimizations and Parallelization
To speed up the processing of the main Algorithm 2, we use par-

allelization and early stopping, as presented in the following algo-

rithm. By modeling the upstream status as a property map of edges,

we can access (read and modify) the already calculated relation for

an edge through an atomic operation and in constant time.

First, we initialize the search engine by running Dijkstra’s Al-

gorithm for 𝑆 ∪ 𝐶 . Unfortunately, the decision algorithm is not

thread-safe because it (a) modifies the graph weights and (b) relies

on data structures specific to graph search. Next, we instantiate as

many threads as the CPU sensibly supports and set up a thread-

local copy of the search engine for each thread. For each edge,

submit a decision problem as a task assigned to some of the avail-

able worker threads. Each thread gets a copy of the search engine,

including the graph, the predecessor map storing the shortest path

result, the distance map used for calculations, a priority map that

accelerates graph search, and a set of non-traversable edges. Before

invoking the decision algorithm aspects—the four combinations in

Algorithm 1—for an edge 𝑒 , we first check whether it has already

been identified as upstream by the same or another thread.

We stop processing as soon as our algorithm has revealed that the

given edge is upstream, which can happen in any of the four cases

defined in Algorithm 1. Exceptions are used to exit the algorithm

when necessary, with this exception being caught at the end of the

decision task for this edge. Thereby, useless thread invocations are

reduced to a Boolean comparison to check if the edge is upstream,

resulting in an empty exception being thrown and caught. Thus,

these invocations are handled very efficiently.

If a path exists, the decision algorithm is implemented so as to

return the simple path through edge 𝑒 . As a result, we significantly

improve the performance by concluding that, in addition to edge 𝑒 ,

Algorithm 3 Parallelized Algorithm with Early Stopping

Input: Graph 𝐺 (𝑉 , 𝐸), Starting points 𝑆 , Controllers 𝐶

Output: Property map on edges 𝐸 with upstream status

1: E ← Dijkstra(𝐺, 𝑆 ∪𝐶) ⊲ initialize search engine

2: instantiate 𝑛 threads

3: create thread-local copies of E
4: for 𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 do ⊲ parallel processing

5: submit decision problem for 𝑒 to available thread:

6: try
7: if upstream[𝑒] then
8: throw done
9: else
10: invoke decision algorithm on 𝑒:

11: if isUpstream(E, 𝑒, 𝑠, 𝑐) then
12: for 𝑒′ ∈ edges(𝑃) do ⊲ simple path P via 𝑒

13: upstream[𝑒′] ← true
14: throw done ⊲ early exit decision algorithm

15: catch done
16: return upstream

all edges within this path are upstream. We atomically update the

global shared property map accordingly, and thus, no thread syn-

chronization is required. Additionally, we note that it is sufficient

to assess that an edge is upstream for a single (𝑠, 𝑐) pair.

3.4 Illustrative Example
In Figure 2, we show the iterative process of the proposed algo-

rithm on an example utility subnetwork. From the graph depicted

in (1), we can identify one starting point 𝑠1 and two controllers 𝑐1
and 𝑐2. Our algorithm employs Dijkstra’s Algorithm with 𝑆 ∪𝐶 as

landmarks to initialize the search engine. In the following steps, we

iterate through all the edges in the graph, attempting to compute a

simple path from the starting point 𝑠1 and either of the controllers

𝑐1 or 𝑐2 and passing by the current edge.

We start with edge (𝑣1, 𝑣3) and search for a simple path between

𝑠1 and 𝑐1 by looking at the four combinations of shortest paths

defined in 1. An example of these four cases is shown in step (2),

where even though we find a short path 𝑠1 → 𝑣3, no short path

can be found between 𝑣1 and 𝑐1 after setting all edges adjacent

to 𝑠1 → 𝑣3 to ∞. As a reminder, we set these adjacent edges to

∞ to make them non-traversable and enforce that no vertex is

included more than once in the combination of the two subpaths,

which is required to get a simple path. Since no simple path was

found between 𝑠1 and 𝑐1 via (𝑣1, 𝑣3), in step (3), we look into the

same edge but with respect to the second controller. Indeed, we

are able to find a simple path from the concatenation of two short

subpaths, where the second path is computed in the same graph

but with edges adjacent to the first one set to ∞: edge (𝑣1, 𝑣3) is
upstream. In step (4), we conclude that all edges along the simple

path 𝑠1 → 𝑣3 → 𝑣1 → 𝑐2 are upstream, and we no longer need to

evaluate them with the decision algorithm. The same process is

repeated for edge (𝑣2, 𝑣3) as is shown in steps (5-7).

In steps (8-9) and (10-11), we directly identify a simple path from

the starting point to the controller vertex 𝑐1 via edges (𝑣4, 𝑣5) and
(𝑣4, 𝑣6), respectively. All edges along these two simple paths are

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Mansour and Werner

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(1) Run Dijkstra’s Algorithm for 𝑆 ∪ 𝐶 as
landmarks to prepare the search engine.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

∞

∞

∞

∞∞ ∞∞

(2) (𝑣1, 𝑣3) : no simple path exists from 𝑣1 to
𝑐1 with edges adjacent to 𝑠1 → 𝑣3 set to∞.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

∞
∞∞

∞

(3) A simple path exists between 𝑠1 and 𝑐2

through edge (𝑣1, 𝑣3) . (𝑣1, 𝑣3) is upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(4) Set all edges in the computed shortest
path for edge (𝑣1, 𝑣3) as upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

∞

∞ ∞ ∞
∞

∞∞

∞ ∞ ∞
∞∞

(5) (𝑣2, 𝑣3) : no simple path exists from 𝑣2 to
𝑠1 with edges adjacent to 𝑐1 → 𝑣3 set to∞.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

∞

∞ ∞∞

∞
∞∞

(6) A simple path exists between 𝑠1 and 𝑐2

through edge (𝑣2, 𝑣3) . (𝑣2, 𝑣3) is upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(7) Set all edges in the computed shortest
path for edge (𝑣2, 𝑣3) as upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

∞ ∞∞
∞∞

(8) A simple path exists between 𝑠1 and 𝑐1

through edge (𝑣4, 𝑣5) . (𝑣4, 𝑣5) is upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(9) Set all edges in the computed shortest
path for edge (𝑣4, 𝑣5) as upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(10) A simple path exists between 𝑠1 and 𝑐1

through edge (𝑣4, 𝑣6) . (𝑣4, 𝑣6) is upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(11) Set all edges in the computed shortest
path for edge (𝑣4, 𝑣6) as upstream.

c2

v1 v2

v3

v s1 v

v4 v6 v

v5 v7

c1

v9

v8

11 12

10

(12) No simple paths are found for the rest
of the edges. Final upstream relation.

Figure 2: Solution of the upstream relation in an example utility network based on the proposed algorithm for upstream
edge enumeration using shortest paths. We highlight the current edge of interest in gray, the upstream relation in red, and
non-upstream features in black.

Calculating Upstream Relation in Spatial Networks Under Path Constraints SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

upstream, and besides, we do not need to evaluate the same edge

for a simple path to the second controller since the edge is already

upstream. For the rest of the edges that have not yet been visited

and were not labeled upstream as part of a simple path for another

edge, no simple path is found from the starting point to either

controller. The final upstream relation with all upstream features

highlighted in red is shown in step (12).

3.5 Path Constraints
For ease of exposition, we have explained how to compute the

upstream relation from a sequence of shortest path queries or, more

concretely, simple path existence queries. In very large networks,

however, we will face a problem: the number of path computations

scales linearly in the number of edges of the network.

In practical applications like utility networks, however, various

constraints often limit the usability and efficiency of paths. For

instance, the length of a useful path can be constrained by physical,

logistical, and economic factors. Transporting goods or resources

over excessively long distances is simply not possible or sensible

due to potential delays and the increase in costs and energy con-

sumption. For the semantic web example, short and contextually

relevant connections are more meaningful than far-distance ones

between any two nodes in the semantic graph and, thus, should be

prioritized. In the case of an indoor navigation problem, constraints

are even more common. Certain areas within a building might be in-

accessible due to security restrictions, maintenance work, or safety

precautions. In addition, paths within some environments might

have certain properties that are needed for an application, including

sufficient capacity to handle traffic, performance measures like time

efficiency, and cost constraints related to resources.

These various path constraints can be seamlessly embedded into

the presented framework by replacing the shortest path calculation

with a constrained shortest path calculation, effectively deciding

whether a simple path with the given constraints exists. In general,

constraints only result in increasing edge weights, either gradu-

ally or instantly. For example, when a distance limit is reached,

all outgoing edges can be assigned infinite weight to prune the

search space. These methods are fully compatible with the land-

mark indexing scheme for shortest paths. We expect that in huge

networks, e.g., transport networks and semantic web, a distance

threshold is routinely set in order to limit the number of edges that

can contribute to the upstream relation. This can be set absolutely,

e.g., based on the transport cost or relative to the distance between

any source and controller.

Unlike our proposed algorithm, the solutions presented for the

challenge do not take this into consideration [11, 20, 28]. Indeed,

we cannot apply distance or cost thresholds when using BC-tree. If

we wish to explore various upstream relations with different restric-

tions, we would have to completely reconstruct the graph entirely

and remove the features that do not align with these properties.

4 A Faster Variant for Large Networks
The algorithm described so far turns out to be fast, as we will detail

later with reference to Esri’s Naperville dataset example given on

the challengewebpage. This efficiency is due to the size of the spatial

network, which is still rather small, and the upstream relation being

pretty local within this graph.

In this section, we propose two aspects that can be used to in-

crease performance on very large networks: The first is biconnected

pruning as proposed in [20], and the other is path penalization.

4.1 Biconnected Pruning
While we highlighted the challenges of reducing the problem to the

BC-tree, which makes it difficult to impose constraints on the paths,

it can still be used to prune components that cannot be upstream.

Indeed, unlike the computationally efficient BC-tree solution, our

algorithm, although fast, mainly focuses on enabling the integration

of constraints into the upstream computation. To solve the upstream

relation for large and constrained spatial networks, we propose to

initially compute the BC-tree for pruning using the highly efficient

solution of the challenge winners [11, 20, 28]. This exploits the fact

that if a biconnected component is not upstream, it cannot become

upstream under path constraints. We can then apply our method

to the reduced unconstrained subgraph to remove the features that

do not comply with the restrictions.

4.2 Path Penalization
In the case of large biconnected components, it can be beneficial

to tweak the search of shortest paths in a way such that each path

automatically explores another part of the graph. As long as no

constraint is imposed on the length of the path, we can simply

increase the weights of previously visited paths. Consequently, the

probability is reduced that a future shortest path shares common

subpaths with this path. This is connected to the fact that if we

compute a single path, we will conclude for each of its edges that it

is upstream. Therefore, discovering different paths will speed up

the procedure.

5 Handling Upstream Vertices and Special Cases
While defining the upstream relation in terms of edges is intuitive,

we wish to identify the set of all upstream features within a network,

including both edges and vertices. This comprehensive approach

unveils the entire set of network elements (transport connections,

transformers, pumps, etc.) that are part of the upstream connections.

However, despite its apparent simplicity, this task is not without

complexities. Indeed, some specific cases require careful considera-

tion, of which we highlight only the most interesting:

• If a starting point is an edge, both vertices can be upstream,

one can be upstream, or neither is upstream.

• If a starting point coincides with a controller, we agree that

this is upstream for practical purposes. However, it is not

clearly upstream in the sense of Definition 1 because it is

not part of any path at all.

For the case of starting edges, we propose to alter the graph

by introducing a novel vertex 𝑠 in the middle of the starting edge

𝑠𝑒 = (𝑝, 𝑞) to serve as a start vertex, as shown on the left of Fig-

ure 3. The drawback of this adjustment is that it alters the graph

structure. If this cannot be tolerated—where should this virtual ver-

tex be located in the physical world?— it is possible to handle this

algorithmically by involving a certain set of special cases. Another

approach, depicted in Figure 3 on the right, is to disable the starting

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Mansour and Werner

p s q

p q
se

s1 s2

p q
se

∞
Figure 3: Two possible approaches to handle the case of a
starting edge instead of a starting vertex: (left) introduce a
ghost vertex or (right) disable the starting edge.

edge by assigning it an infinite weight. Hence, this edge is excluded

from any potential path computations and instead the vertices on

both ends are now the starting points. When determining the up-

stream status of the starting edge, if any of its adjacent edges are

found upstream, the starting edge is considered upstream as well.

6 Implementation Performance
6.1 Naperville Electric Utility Network
To evaluate the algorithm, we first use the two datasets provided by

the 2018 ACM SIGSPATIAL GIS Cup challenge organizers [21]. The

first one is rather trivial, namely a small sample dataset with only

34 features to help verify the soundness of the proposed algorithm.

The second dataset, Esri’s Naperville Electric Utility Network, is a

real-world electric network of the city of Naperville with a total of

17, 566 features, of which 8, 465 are vertices and 9, 101 are edges. We

note that both datasets are represented by unweighted bidirectional

graphs. Figure 4 illustrates a sample extract showcasing a subset

of features from the Naperville electric dataset. The example of an

upstream relation between a starting point in the northwest and a

controller in the southwest is displayed in cyan.

Figure 4: Extract from the Naperville Electric Dataset [21]
with the upstream features of an example upstream relation
between one starting point and one controller highlighted
in cyan.

6.2 Performance
The performance tests presented in this paper are based on eval-

uations conducted on a workstation and averaged over 20 runs.

The first dataset is a sample dataset that is too small to measure

runtime performance. With a precision of milliseconds, the algo-

rithm’s execution time is measured to be 2.4ms for a parallelization

of eight threads. This is the case due to the thread setup cost and

the copying of the search engine. For the medium-sized dataset con-

taining the electric network of the city of Naperville, we measure

the execution times of the given instance on a single machine for

varying numbers of threads.

Figure 5 depicts the performance of themain algorithm excluding

I/O. It improves very quickly for small numbers of threads. This is

due to the fact that the search engine indices created from Dijkstra’s

algorithm are getting parallelized. After that, we can see a linear

trend of slowly decreasing times, reaching 289ms on 8 threads.

This is the case where the decisions are being parallelized, but the

number of threads is larger than the needed landmarks. Indeed, the

graph search preparation and the treatment of the non-upstream

edges dominate runtimes for higher numbers of threads.

Figure 5: Performance scaling of the proposed algorithm
with increasing number of threads on the Naperville dataset.

As we stated beforehand, unlike with the challenge, our algo-

rithm does not achieve the best computational efficiency. Instead,

our main focus is the efficient handling of constraints. With this

first experiment focusing on runtime performance, our aim is to

demonstrate that our introduced algorithm is still capable of quickly

identifying the upstream relation. To handle even larger datasets

with constraints, we suggest first reducing the graph to the sub-

graph of upstream relation without constraints using the existing

BC-tree approaches. This is followed by applying our algorithm to

filter out the paths that do not satisfy the constraints.

7 Constrained Upstream Relation
7.1 Complex Multistory Indoor Building
An additional type of dataset we want to analyze is a complex mul-

tistory indoor building. Such maps are especially interesting thanks

to the various constraints they can be subjected to, which is themain

focus of our proposed algorithm. To this end, we consider the floor

plan of the Idaho State University Meridian campus [7, 8], which

Calculating Upstream Relation in Spatial Networks Under Path Constraints SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Clinic

Clinic Office

Clinic Conference room

Student Services

Building Operations

Restroom

Education

Classroom/Lecture hall

Lab

Clinic Lobby

Office

Conference room

Figure 6: The floor plan map and graph network of a two-
story university campus showcasing emergency exits and
emergency exit hallways highlighted in red and rooms color-
coded based on their functionality [7, 8]. The two floors are
connected with multiple elevators and staircases.

we use to construct an undirected graph. We represent rooms and

offices as nodes and connect them with constrained and weighted

edges to reflect their distances and access restrictions. In contrast

to the utility dataset, we select this indoor map to closely examine

the importance of our algorithm in handling constraints that arise

during navigation and emergency response evacuation. Indeed, as

is shown in Figure 6, the university campus consists of two floors

connected by escalators and elevators, with multiple emergency

exits highlighted in red and color-coded rooms to indicate their

function, which we use to implement accessibility limitations.

7.2 Spatial Analysis
To look into our algorithm’s ability to handle constraints, we an-

alyze two examples of constrained path searches on the indoor

navigation map for efficient movement based on door accessibility

restrictions and emergency exits under length constraints.

In the first example, our aim is to guide student flow in the

university building to identify the main pathways while ensuring

they bypass certain areas. This is an important step in preserving

privacy and preventing unauthorized access while evaluating access

and connectivity of the building. Moreover, we can use the upstream

relation to analyze the shortest path for potential bottlenecks in

Clinic

Clinic Office

Clinic Conference room

Student Services

Building Operations

Restroom

Education

Classroom/Lecture hall

Lab

Clinic Lobby

Office

Conference room

Figure 7: An upstream relation under constraints with the
main entrance of a university campus as the starting point
and a lecture hall on the second floor as the controller. To
reflect the access restrictions to certain areas (clinics, clinic
offices, offices, labs, and building operations), we apply ab-
solute constraints, meaning the edges are considered non-
traversable. Elevators and non-emergency staircases are used
to move from one the first floor to the other.

narrow hallways or single points of access. In Figure 7, we use

our algorithm on the generated graph and show the computed

upstream relation between the main entrance on the first floor and

an example lecture hall on the second floor. We assess the algorithm

using absolute constraints derived from limiting access to clinics,

clinic offices, offices, labs, and building operations. Furthermore, all

emergency exits and emergency exit hallways must always remain

unobstructed and are therefore off-limits. We can clearly see that

none of the prohibited areas were part of the upstream relation,

which is highlighted in red, meaning that our algorithm succeeded

in complying with the specified restrictions. To get from the first

level to the second, the nodes for the elevators and non-emergency

staircases are visited.

As mentioned in the introduction, depending on the anticipated

number of occupants in a building, the analysis of the redundancy

of emergency exit routes is essential. This assessment ensures the

availability of alternative pathways and prevents potential con-

gestion points. During evacuation procedures, elevators and esca-

lators are banned, and the entire emergency route must remain

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Mansour and Werner

unobstructed and accessible to everyone without requiring special

permission. Therefore, elevators are also prohibited in addition to

maintaining the previously established absolute constraints.

Furthermore, evaluating the evacuation routes for both safety

and efficiency is crucial to ensure rapid access to the emergency

exits when necessary. Since our graph lacks travel time information

between vertices, we treat the efficiency constraint as a restriction

on path length rather than time. Consequently, we apply a condi-

tional constraint on the path length that limits the travel distance to

a maximum of 235 meters to guarantee quick access to emergency

exits. This ensures that more than one exit route is consistently

accessible with minimal detours.

Figure 8 highlights the upstream relation between the lecture

hall from the previous example as the starting point and all exit

discharge doors on the first floor as the controllers. Multiple paths

starting from this room lead to an emergency exit door within the

specified maximum travel distance. This constraint is evident in the

upstream relation, given that nearly all routes are concentrated on

the left side of the building. Moreover, these paths further confirm

that our algorithm adhered to the specified absolute constraints,

and we note that no elevators or restricted areas were encountered

along the way. This example illustrates the significance of imposing

constraints in spatial network analysis, as it helps narrow the scope

of the problem and make it more visually manageable.

8 Conclusion
With this paper, we have demonstrated how a well-chosen graph

search algorithm in a parallel implementation can be used to solve

the upstream relation in spatial networks under constraints. This is

achieved by integrating three aspects: First, we derive a fast decision

algorithm in terms of shortest path queries for the same graph with

possibly increasing graph weights; second, we parallelize a linear

search through all edges and store the results in a thread-shared

array with atomic operations allowing us to apply updates with-

out thread synchronization mechanisms, and, third, we carefully

implement the needed resolution of special cases when generaliz-

ing from upstream edges to upstream features. Additionally, we

provided insights into scaling this approach to handle significantly

large networks by minimizing overlap and configuring the thread-

local search engines with a few different landmarks to make these

threads experts for certain sets of targets.

While our solution is less optimized towards runtime perfor-

mance, it effectively addresses the challenge of context-sensitive

spatial networks. In contrast to related work based on biconnected

components [11, 20, 28], our proposed solution is directly capable

of including any form of path constraint that essentially translates

to increasing edge weights. This is possible with the base algorithm,

which allows us to perform constrained shortest path searches. In

principle, it is even compatible with notions of upstream, in which

a simple path is replaced by an alternative definition of a sensible

path. This is provided as long as an efficient decision algorithm

for the existence of such a path is available, and this definition is

consistent with dividing the path into two segments.

For future work, we envision extending this algorithm to dis-

tributed memory parallelism on supercomputers to be able to an-

alyze very large networks beyond the capacity of typical shared

Clinic

Clinic Office

Clinic Conference room

Student Services

Building Operations

Restroom

Education

Classroom/Lecture hall

Lab

Clinic Lobby

Office

Conference room

Figure 8: An upstream relation under constraints from a
lecture hall of a university campus as the starting point to all
emergency exits. Elevators are prohibited, and certain areas
require special access, translating to absolute constraints.
Additionally, a conditional constraint on the path length
limiting the travel distance to a maximum of 235 meters is
applied to ensure the emergency exits are reached quickly.

memory architectures. In addition, we suggest investigating other

types of dynamic constraints, such as edge lifetime contraction.

This constraint explores the duration an edge remains accessible

under edge contractions until the desired path becomes impassable,

and an alternative path must be identified. Understanding how

these constraints impact network connectivity could help discover

different vulnerabilities and weaknesses of mobility networks under

varying conditions in real-world scenarios. This is particularly rel-

evant to implementing robust and adaptive rerouting strategies in

the context of mobility networks, where infrastructures like bridges

or tunnels may impose constraints such as height or weight limits.

Acknowledgments
We thank the 2018 ACM SIGSPATIAL GIS Cup challenge organizers

for formulating this inspiring problem and hosting the challenge.

References
[1] Julhas Alam. 2024. Bangladeshi leader says a shopping mall that caught fire had no

emergency exits. Death toll climbs. Retrieved May 16, 2024 from https://apnews.

com/article/bangladesh-fire-dhaka-mall-32b7fee567511126776d074ddd2d614c

https://apnews.com/article/bangladesh-fire-dhaka-mall-32b7fee567511126776d074ddd2d614c
https://apnews.com/article/bangladesh-fire-dhaka-mall-32b7fee567511126776d074ddd2d614c

Calculating Upstream Relation in Spatial Networks Under Path Constraints SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

[2] Marc Barthélemy. 2011. Spatial networks. Physics Reports 499, 1 (2011), 1–101.
https://doi.org/10.1016/j.physrep.2010.11.002

[3] Adil Bhat. 2024. India’s deadly industrial workplaces in the spotlight. Retrieved

May 16, 2024 from https://www.dw.com/en/deadly-industrial-accidents-in-india-

kill-and-disable-thousands/a-67930230

[4] Andrzej Białecki, Natalia Jakubowska, Paweł Dobrowolski, Piotr Białecki, Leszek

Krupiński, Andrzej Szczap, Robert Białecki, and Jan Gajewski. 2023. SC2EGSet:

StarCraft II Esport Replay and Game-state Dataset. Scientific Data 10, 1 (Sept.

2023). https://doi.org/10.1038/s41597-023-02510-7

[5] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[6] James A. Edwards and Uzi Vishkin. 2012. Better speedups using simpler

parallel programming for graph connectivity and biconnectivity. In Proceed-
ings of the 2012 International Workshop on Programming Models and Applica-
tions for Multicores and Manycores (New Orleans, Louisiana) (PMAM ’12). As-
sociation for Computing Machinery, New York, NY, USA, 103–114. https:

//doi.org/10.1145/2141702.2141714

[7] Esri. 2023. Meridian Indoors First Floor. Retrieved June 04, 2024

from https://www.arcgis.com/apps/mapviewer/index.html?layers=

11b9efa3d5fb4337acdbec4e90bbec65

[8] Esri. 2023. Meridian Indoors Second Floor. Retrieved June 04, 2024

from https://www.arcgis.com/apps/mapviewer/index.html?layers=

968b61bb3d2f4df48dea262bd90b0a49

[9] Robert W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (jun

1962), 345. https://doi.org/10.1145/367766.368168

[10] Andrew Goldberg and Chris Harrelson. 2003. Computing the shortest path: A*

search meets graph theory. Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (04 2003). https://doi.org/10.1145/1070432.1070455

[11] Zach Goldthorpe, Jason Cannon, Jesse Farebrother, Zachary Friggstad, and

Mario A. Nascimento. 2018. Using biconnected components for efficient iden-

tification of upstream features in large spatial networks (GIS cup). In Pro-
ceedings of the 26th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (Seattle, Washington) (SIGSPATIAL ’18). As-
sociation for Computing Machinery, New York, NY, USA, 630–633. https:

//doi.org/10.1145/3274895.3276476

[12] Ruirong Guo, Chaokui Li, and Haibin Guo. 2023. Indoor Navigation Network

Model Construction Method Based on Building Information Model. Journal of
Geographic Information System 15 (01 2023), 367–378. https://doi.org/10.4236/

jgis.2023.154018

[13] John Hammock. 2023. The Crucial Role of Infrastructure in Economic Develop-

ment. https://www.linkedin.com/pulse/crucial-role-infrastructure-economic-

development-john-hammock/ Accessed on March 21, 2024.

[14] Peter Hart, Nils Nilsson, and Bertram Raphael. 1968. A Formal Basis for the

Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107. https://doi.org/10.1109/tssc.1968.

300136

[15] Erik Hoel, Petko Bakalov, Sangho Kim, and Thomas Brown. 2015. Moving

beyond transportation: utility network management. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’15). Association for Computing Machinery, New York, NY,

USA, Article 8. https://doi.org/10.1145/2820783.2820879

[16] Fei Hu, Zhenlong Li, Chaowei Yang, and Yongyao Jiang. 2019. A graph-

based approach to detecting tourist movement patterns using social media

data. Cartography and Geographic Information Science 46, 4 (2019), 368–382.

https://doi.org/10.1080/15230406.2018.1496036

[17] Kelsey Jack. 2022. How much do we know about the development impacts

of energy infrastructure? https://blogs.worldbank.org/en/energy/how-much-

do-we-know-about-development-impacts-energy-infrastructure Accessed on

March 21, 2024.

[18] Ben Knight. 2019. How stable is Germany’s power grid? Retrieved April 26, 2024

from https://www.dw.com/en/berlin-blackout-raises-questions-over-germanys-

power-grid/a-47730394

[19] Zhihang Liu, Chenyu Fang, Hao Li, Jinlin Wu, Lin Zhou, and Martin Werner.

2023. Efficiency and equality of the multimodal travel between public transit

and bike-sharing accounting for multiscale. Sustainable Cities and Society 101

(12 2023), 105096. https://doi.org/10.1016/j.scs.2023.105096

[20] Salles Viana Gomes Magalhães, W. Randolph Franklin, and Ricardo dos San-

tos Ferreira. 2018. Fast analysis of upstream features on spatial networks (GIS

cup). In Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (Seattle, Washington) (SIGSPA-
TIAL ’18). Association for Computing Machinery, New York, NY, USA, 622–625.

https://doi.org/10.1145/3274895.3276474

[21] Dev Oliver, Bo Xu, and Yuanyuan Pao. 2019. ACM SIGSPATIAL cup 2018 -

Identifying upstream features in large spatial networks. ACM SIGSPATIAL Special
11 (2019), 32–35. https://api.semanticscholar.org/CorpusID:199454201

[22] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAI. https:

//networkrepository.com

[23] Tanuja Shanmukhappa, Ivan Wang-Hei Ho, and Chi Tse. 2018. Spatial analysis

of bus transport networks using network theory. Physica A: Statistical Mechanics
and its Applications 502 (02 2018). https://doi.org/10.1016/j.physa.2018.02.111

[24] Yiquan Song, Lei Niu, Pengfei Liu, and Yi Li. 2021. Fire hazard assessment with

indoor spaces for evacuation route selection in building fire scenarios. Indoor
and Built Environment 31 (03 2021). https://doi.org/10.1177/1420326X21997547

[25] Aaron Spray. 2024. Over 300 Passengers Were Accused Of Bypassing Security
Checkpoints In 2023. Retrieved May 16, 2024 from https://simpleflying.com/

passengers-accused-bypassing-security-checkpoints-2023/

[26] Robert Tarjan and Uzi Vishkin. 1985. An Efficient Parallel Biconnectivity Algo-

rithm. SIAM J. Comput. 14 (11 1985), 862–874. https://doi.org/10.1137/0214061

[27] Robert Endre Tarjan. 1972. Depth-First Search and Linear Graph Algorithms.

SIAM J. Comput. 1 (1972), 146–160. https://api.semanticscholar.org/CorpusID:

16467262

[28] Thomas C. van Dijk, Tobias Greiner, Bas den Heijer, Nadja Henning, Felix Klesen,

and Andre Löffler. 2018. Wüpstream: efficient enumeration of upstream features

(GIS cup). In Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL
’18). Association for Computing Machinery, New York, NY, USA, 626–629. https:

//doi.org/10.1145/3274895.3276475

[29] Cola Wang. 2023. The Importance of Access Control in Airport Security. Retrieved

May 16, 2024 from https://www.aviationpros.com/aviation-security/access-

control/article/53059196/jwm-hi-tech-development-co-ltd-the-importance-of-

access-control-in-airport-security

[30] Agnieszka Widuto. 2023. EU energy infrastructure: Boosting energy secu-

rity. https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/753956/EPRS_

BRI(2023)753956_EN.pdf Accessed on March 21, 2024.

[31] Liping Yang and Michael Worboys. 2015. Generation of navigation graphs for

indoor space. International Journal of Geographical Information Science (05 2015).
https://doi.org/10.1080/13658816.2015.1041141

[32] Yan Zhou, Yuling Pang, Fen Chen, and Yeting Zhang. 2020. Three-Dimensional

Indoor Fire Evacuation Routing. ISPRS International Journal of Geo-Information
9, 10 (2020). https://doi.org/10.3390/ijgi9100558

https://doi.org/10.1016/j.physrep.2010.11.002
https://www.dw.com/en/deadly-industrial-accidents-in-india-kill-and-disable-thousands/a-67930230
https://www.dw.com/en/deadly-industrial-accidents-in-india-kill-and-disable-thousands/a-67930230
https://doi.org/10.1038/s41597-023-02510-7
https://doi.org/10.1145/2141702.2141714
https://doi.org/10.1145/2141702.2141714
https://www.arcgis.com/apps/mapviewer/index.html?layers=11b9efa3d5fb4337acdbec4e90bbec65
https://www.arcgis.com/apps/mapviewer/index.html?layers=11b9efa3d5fb4337acdbec4e90bbec65
https://www.arcgis.com/apps/mapviewer/index.html?layers=968b61bb3d2f4df48dea262bd90b0a49
https://www.arcgis.com/apps/mapviewer/index.html?layers=968b61bb3d2f4df48dea262bd90b0a49
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/1070432.1070455
https://doi.org/10.1145/3274895.3276476
https://doi.org/10.1145/3274895.3276476
https://doi.org/10.4236/jgis.2023.154018
https://doi.org/10.4236/jgis.2023.154018
https://www.linkedin.com/pulse/crucial-role-infrastructure-economic-development-john-hammock/
https://www.linkedin.com/pulse/crucial-role-infrastructure-economic-development-john-hammock/
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1145/2820783.2820879
https://doi.org/10.1080/15230406.2018.1496036
https://blogs.worldbank.org/en/energy/how-much-do-we-know-about-development-impacts-energy-infrastructure
https://blogs.worldbank.org/en/energy/how-much-do-we-know-about-development-impacts-energy-infrastructure
https://www.dw.com/en/berlin-blackout-raises-questions-over-germanys-power-grid/a-47730394
https://www.dw.com/en/berlin-blackout-raises-questions-over-germanys-power-grid/a-47730394
https://doi.org/10.1016/j.scs.2023.105096
https://doi.org/10.1145/3274895.3276474
https://api.semanticscholar.org/CorpusID:199454201
https://networkrepository.com
https://networkrepository.com
https://doi.org/10.1016/j.physa.2018.02.111
https://doi.org/10.1177/1420326X21997547
https://simpleflying.com/passengers-accused-bypassing-security-checkpoints-2023/
https://simpleflying.com/passengers-accused-bypassing-security-checkpoints-2023/
https://doi.org/10.1137/0214061
https://api.semanticscholar.org/CorpusID:16467262
https://api.semanticscholar.org/CorpusID:16467262
https://doi.org/10.1145/3274895.3276475
https://doi.org/10.1145/3274895.3276475
https://www.aviationpros.com/aviation-security/access-control/article/53059196/jwm-hi-tech-development-co-ltd-the-importance-of-access-control-in-airport-security
https://www.aviationpros.com/aviation-security/access-control/article/53059196/jwm-hi-tech-development-co-ltd-the-importance-of-access-control-in-airport-security
https://www.aviationpros.com/aviation-security/access-control/article/53059196/jwm-hi-tech-development-co-ltd-the-importance-of-access-control-in-airport-security
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/753956/EPRS_BRI(2023)753956_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/753956/EPRS_BRI(2023)753956_EN.pdf
https://doi.org/10.1080/13658816.2015.1041141
https://doi.org/10.3390/ijgi9100558

	Abstract
	1 Introduction
	2 Problem Definition and Background
	2.1 The Upstream Relation
	2.2 BC-Tree Solution
	2.3 Shortest Path Algorithms

	3 Enumerating Upstream Edges
	3.1 Algorithm Derivation
	3.2 Implementation Details
	3.3 Optimizations and Parallelization
	3.4 Illustrative Example
	3.5 Path Constraints

	4 A Faster Variant for Large Networks
	4.1 Biconnected Pruning
	4.2 Path Penalization

	5 Handling Upstream Vertices and Special Cases
	6 Implementation Performance
	6.1 Naperville Electric Utility Network
	6.2 Performance

	7 Constrained Upstream Relation
	7.1 Complex Multistory Indoor Building
	7.2 Spatial Analysis

	8 Conclusion
	Acknowledgments
	References

