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Summary
Rising amounts of generated geospatial data, either trajectory-like tracking data, raster-like imagery, or vector-like map-
pings as in OpenStreetMap (OSM), grow the need for multi-modal algorithmic analysis. Existing machine-learning-based
algorithms contradictly mainly focus on image and textual input representations and cannot deal with other modes of
geospatial data. Therefore, we propose a novel method to contextualize vector-like trajectory data with surrounding data
to create easy-to-be-analyzed image-like representations. Our approach includes the proposition of a chase-cam-like scan-
line over space according to the trajectory’s speed and possibly smoothed orientation. Thereby, surrounding pixels in the
vicinity of the trajectory points are accumulated along the scanline and are combined into a visual representation of the
trajectory. To show the potential effects of our work, we predict traffic regulations for trajectory sections in the vehicle
speed dataset based on our proposed trajectory-based sampling of orthophotos in the same region. This proposes a new
way of using multi-modal data sources (trajectories and airborne imagery) to extract road metadata.

Keywords Trajectory analysis · Trajectory contextualization · Geospatial raster image · Scanline

1 Introduction

Increasing amounts of mobile devices and tracking sensors
generate more and more moving point objects, respectively,
trajectory data [24]. GPS-based localization in outdoor en-
vironments, and indoor localization systems in warehouses
or private environments, e.g., based on WiFi, result in inci-
dental collection of this data. Additional trajectory data is
created while using social media and web pages, as well as
while taking phone calls [27]. Researchers in recent years
focused on optimizing the analytical approaches to inves-
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tigate this data type [24]. They proposed various methods
ranging from visualization tools [30, 10] to clustering and
pattern discovery [24, 21], classification [4, 7] and predic-
tion methods [19, 2]. So far, most available algorithms use
trajectories as a single and only type of information, though
this limits analysis possibilities.

At the same time, increased governmental and societal
interest led to a growing amount of satellite and airborne
imagery in the form of raster datasets, e.g. the European
Copernicus satellite program1 and the INSPIRE program of
the European commission2. This raster data is often stored
in compressed patches, i.e., the data is subdivided into dis-
tinct spatial areas and stored in a compressed format within
this context.

Additionally, mapping missions generate more high-de-
tailed vector representations like the prominent example of
the OpenStreetMap (OSM)3. The advantage of these repre-
sentations is that they are generally well-structured and are
available in various levels of detail (LOD).

Therefore, using the manifold geospatial data sources de-
scribed before holds enormous potential in improved meth-

1 https://www.copernicus.eu/, last access: 27.09.2024.
2 https://inspire.ec.europa.eu/, last access: 27.09.2024.
3 https://www.openstreetmap.org/, last access: 27.09.2024.
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ods for fields like mapping, agriculture, traffic analysis, and
catastrophe management. For example, in remote regions,
today’s mapping is already often facilitated by remote sens-
ing, e.g., in the community-run HOT tasking manager of
OSM4. Adding additional data sources like tracking data,
e.g. by vehicles, to these approaches may help automate
previous manual efforts and thereby increase the precision
and timeliness of the created maps. Furthermore, the man-
ifold nature of data capture allows for map validation and
thereby can be used for fighting vandalism in community-
run tools like OSM [18].

In essence, leveraging more data sources will consis-
tently enhance data-based decision-making. However, this
presents a challenge: How can we incorporate the different
data types into one solution considering the Big Data nature
of geospatial data? For this problem, we propose a new ap-
proach to analyze trajectory data together with its context
with the following key properties:

� We propose a new multi-modal representation of trajec-
tory data based on sampling surrounding environment
features from aerial imagery or vector maps.

� Trajectories are visualized in images, where columns of
the image are sampled from raster images surrounding
the trajectory. This allows for visual interpretation of tra-
jectory data by both machine learning models and hu-
mans.

� We show that our approach can predict street features like
surfaces or speed limits from the proposed novel repre-
sentation of trajectories.

2 RelatedWork

A basic trajectory T is defined as a sequence of m points
p, such that T = Œp1; p2; :::; pm�, with p = fx1; :::; xn; tg.
The coordinates xi denote the position in Rn, and t is the
timestamp at which the position was captured [7, 4]. So far
trajectories are analyzed in various ways: With trajectory
classification the main goal is to assign a label to the tra-
jectory data or subsets of the trajectory [4]. If there are no
previous labels available various clusteringmethods (dense,
hierarchical, spectral) can be used to still group trajectories
[4]. Both techniques can be useful in various applied fields,
for example, object motion prediction, traffic monitoring,
activity understanding, outlier detection, weather forecast-
ing, and geography [4]. Other analysis fields for trajectories
are the similarity prediction of trajectories [21, 24, 11] and
privacy preserving analysis [14].

In comparison to trajectories, geospatial raster data is
stored in a grid-like structure with equal-sized spacing be-
tween raster points [22]. Geospatial raster data is mostly

4 https://tasks.hotosm.org/, last access: 27.09. 2024.

stored and provided in patch-like partly overlapping rep-
resentations of single raster images, called mosaics. These
come with different levels of detail. Raster data is generally
not made or stored to effectively access or modify single
values or pixels [1], as the patches can be compressed and
must be loaded into memory to be decoded. Therefore, stor-
ing raster images in databases as binary blobs is discour-
aged [1]. This raises the question of efficiently accessing
individual elements of raster data [25]. In the context of
our problem, this boils down to efficiently finding raster
points related to a vector-based trajectory. To solve this
issue, various approaches were presented in the literature
on jointly analyzing vector and raster data [25]. [8] uses
a scanline to calculate zonal statistics of vector-denoted ar-
eas in raster datasets. In addition, to enable compressed
storage with improved accessibility, research is being con-
ducted on raster data structures [13]. For example, k2-trees,
as an improved version of a region quadtree, showed im-
proved range queries in the raster domain while still lacking
performance in single cell queries [25, 5]. Alternatively, ap-
proaches for in-memory querying were proposed by [3].

The first approaches of contextualizing trajectories,
which means enriching the pure trajectory data with ad-
ditional information, were performed by adding semantic
information, also called aspects, to the location passed by
the trajectory [29, 21]. Contexts are thereby denoted as
“influential factors [...] during the move” [24] and can be
differentiated into external contexts (e.g., geographical and
environmental factors) and internal contexts (e.g., states,
circumstances, and properties like speed) [17]. In general,
many authors emphasize the value of this additional in-
formation for trajectory analysis [24, 29, 6]. Though, [24]
and [11] also explain, that only limited research has been
conducted on the influence of contexts of trajectories on
analyzed features like similarity. Examples of trajectory
contextualization are, e.g., the use of weather information
as data cubes around trajectories to predict aircraft routes,
resulting in improved trajectory predictions [2]. Another
approach showed that introducing context priors may im-
prove trajectory parsing in video images [15]. Also, for
clustering trajectories [29] and movement pattern mining
[6], the contextualization was described to be beneficial.
Based on previous work, so far trajectories have been
contextualized with various additional data, though, to the
best of our knowledge, this contextualization has not been
constructed from the spatial surroundings of the observed
trajectories.

3 Methods

In comparison to previous approaches that add aspects as
additional information to the single trajectory points, we
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Fig. 1 Our scanline-based raster sampling approach contextualizes trajectories in representations of their surroundings

propose a new approach that not only adds additional as-
pects but also translates the trajectory together with its spa-
tial context in an image-like representation. In the follow-
ing, we explain our approach based on the three questions:

� How to represent contextualized trajectories as images?
� How to efficiently load single image points?
� How to use this approach for image-enhanced trajectory

classifications?

Figure 1 gives an overview of the proposed method.

3.1 Visual Contextualized Trajectory
Representation

Suppose we want to include multi-dimensional informa-
tion in general. In that case, there are two possibilities
for appending information: We can embed the environment
features in context aspects and add those to the trajectory
data. Alternatively, we can embed the trajectory in a more
complete format that additionally stores information on the
locality of the data points in a data cube around trajec-
tory points. This may include storing additional information
by introducing additional local coordinate frames at every
point in the trajectory to store multi-dimensional informa-
tion around a trajectory point. This approach is envisioned
in Fig. 2. In general, there are several ways to orient this
local coordinate system. While the orientation of the y-axis
is given in 2D trajectories on the earth’s surface by the
geospatial nature of the data defining an orthogonal on the
map, a rotation around this axis is generally possible for dif-
ferent analyses of trajectories. The z-axis can be tangential

to the trajectory (as shown in Fig. 2), in the direction of the
next trajectory point or the direction of the finish point of
the whole trajectory or a trajectory segment. The problem
with this approach is that no well-developed algorithms for
analyzing these data cubes exist.

Consequently, we propose to use analysis algorithms
originally proposed for other multi-dimensional data repre-
sentations, namely images, to analyze trajectory data. This
requires reformating the trajectory data and the respective
data cubes around them into an image-like representation.
Our approach thereby focuses on 2D trajectories in the xz-
plane. Considering that we want to apply additional knowl-
edge from areas around the trajectory anyway, we propose
embedding each trajectory point into a column of image
points sampled from a raster representation in the xz-plane.
The column-like sample of points is conducted on a scan-

Fig. 2 Introduction of local coordinate frames along the trajectory
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Fig. 3 Visualization of the sampling approach, points on the scanline

s
j
i denote the determined location of the sampling point; the marked
cells show the sampled raster cell

line in the xz-plane going through a trajectory point, later
called support pi . This idea is shown in Fig. 3. In com-
parison to the scanline-based sampling of raster points de-
scribed by [8], our scanline approach is fundamentally dif-
ferent. Indeed, it is not used to sample subsets of a raster
dataset denoted by a polygon in the vector space but instead
extends the vector space of the trajectory by an additional
dimension.

Returning to the nature of trajectories as a space-time
path, a first question arises on selecting support points for
the image representation. This allows various methods also
depending on the nature of the storage of the trajectory.
Generally, a selection of these points on the trajectory may
happen in an equal distance, equal time, data creation-de-
pendent, or parameter-dependent manner. Parameters can
thereby be additional aspects of the trajectory and its con-
text. As in the practical geospatial domain, trajectories are
often captured by storing GPS-based location signals. In
this case, failures in measurement can lead to an introduc-
tion of jitter in the trajectory. Therefore, smooth curvatures
can not be guaranteed for the trajectories. The outlier ef-
fect of single distorted trajectory points can be reduced by
smoothing the trajectory with additional sampled points.

A second question arises about the location and orienta-
tion of the scanline used for sampling image points in the
raster domain: Generally, every differentiable curve in the
xz-plane may be considered a valid approach for this scan-
line and the construction of the best curve for an analysis
task may be use case dependent. All straight/linear lines or
function-based trajectories are considered valid scanlines.
Another parameter is the angle of the scanline to the coor-
dinate system. For our proposal and the simplicity of our
approach, we only consider straight scanlines in the direc-
tion of the x-axis of the local coordinate frame. As a base-
line approach, we defined this local x-axis as orthogonal to

the straight connection of the support point pi with the
following support point pi+1 as shown in Fig. 3.

The third parameter in this scanline approach is the ac-
tual sampling of points on this scanline. Again, these may
be equally distributed in a certain space interval around the
support point or sampled according to defined distribution
(random, Gaussian, etc.). For our approach, we use equal
space sampling as a baseline method.

3.2 Improvements on Data Loading for Raster Data

The nature of the raster image storage is a main issue in con-
ducting the proposed sampling of raster points to obtain the
visual images from trajectory data and corresponding 2D
images. As they are stored in compressed mosaic patches
rk (compare Fig. 1) and cannot be directly accessed pixel-
wise, the standard approach expects a loading of the whole
image patch into memory to retrieve single pixels. Garbage
collection would then ensure the cleaning of this memory
space as soon as the image is not actively used anymore,
which would result in several reloads of rk to get the vis-
ual representation of single trajectories. On a global scale,
processing trajectories in similar spatial regions must load
the same image patch.

Therefore, in our approach, we propose a threefold pro-
cedure. First, we use an R-tree index to fast identify the
correct image patch for a given location. Second, we order
all trajectories to be contextualized spatially based on their
bounding boxes, such that proximate trajectories are contex-
tualized in sequence. Finally, we apply a least-recently-used
(LRU) cache to memory to keep the least loaded mosaics
rk opened and untouched by garbage collection. Based on
the nature of trajectories, which implies the spatial proxim-
ity of consecutive raster points, and additionally, the spatial
sorting of the trajectories to be contextualized one after an-
other, this reduces the amount of reloads of a single image
mosaic patch drastically. This is due to the fact, that there
is a high probability that drawn samples for the following
support point will lay on a similar image patch as for the
previous one. With our approach we therefore keep as many
images as possible in active RAM, thereby improving the
RAM utilization and avoiding unnecessary and expensive
reloading of images. With that, only a fraction of image-
loading procedures are necessary compared to the standard
approach. To load the single raster pixel, after the location
of the to-be-sampled point is obtained from the scanline
approach and the loading of rk in RAM, a distance-based
selection is chosen. More complex selection of raster val-
ues like the Bresenham Algorithm [9] are not applicable as
they are too inefficient.
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Fig. 4 Patching of trajectory image stripes and majority voting for seg-
ment classification

3.3 Analysis Task: Image Classification

Our proposed sampling approach results in an image strip
of the size # trajectory support points pi ×# sampling
points per trajectory point. While the second parameter can
be fixed during creation for a certain set of trajectories, the
first parameter is purely dependent on the length of each tra-
jectory. Common image-based analysis methods like Con-
volutional Neural Networks (CNNs) expect images within
one dataset to be of constant size. Therefore, we propose
tiling the images produced with our approach into equally
sized patches. As explained before, trajectory analysis of-
ten involves classifying trajectory points and segments. Our
approach can do so by classifying each scanline separately,
which means support point by support point or continuously
classifying image segments of predefined length (amount of

Tab. 1 Label overview obtained from the VSD [26]. All labels are originally from OSM.

Road Feature Explanation

way_maxspeed (Speed Limit) ’10’, ’15’, ’20’, ’30’, ’40’, ’50’, ’60’, ’70’, ’80’, ’90’, ’100’, ’110’, ’130’

way_type (Category) ’residential’, ’tertiary’, ’motorway_link’, ’trunk_link’, ’secondary_link’, ’secondary’, ’tertiary_link’, ’ser-
vice’, ’primary_link’, ’trunk’, ’unclassified’, ’motorway’, ’primary’, ’living_street’

way_surface (Category) ’gravel’, ’compacted’, ’sett’, ’cobblestone’, ’asphalt’, ’paving_stones’, ’unpaved’, ’concrete’, ’paved’

pixels). While in the ideal case, an instance-based classifica-
tion of the support points would result in the most accurate
classification, the missing context of single points can lead
to misconceptions and wrongly inhomogeneous classifica-
tions of actually homogeneous trajectory segments. There-
fore, our approach features a segment-based majority vote
by providing multiple labels for each road segment. There-
fore we use a segment-based majority voting algorithm as
shown in Fig. 4 to classify road segments.

4 Datasets

For our approach, we relied on two types of data: Trajecto-
ries in vector representation (in our case the vehicle speed
dataset (VSD)[26]) and additional context information in
raster data format (here orthophotos of the Czech govern-
ment [12]).

The VSD [26] contains more than 9000 km trajectories
tracked as GPS tracks on unfamiliar routes in the Czech Re-
public. The dataset contains 5973 individual rides, which
are augmented with labels from OSM, like maximum al-
lowed speeds or road classification. A detailed explanation
of used classification labels in our approach is given in
Table 1.

As depicted in the plot shown in Fig. 7, the data exhibits
a skewed class distribution. This skewness is attributed to
the intrinsic characteristics of road types within the Czech
Republic. Considering the example of the predominance
of asphalt roads along with other factors, such as varying
speed limits, it is to be expected that the dataset would
exhibit a bias towards certain characteristics. Consequently,
this uneven distribution underscores the complexity of tasks
related to road classification.

The Czech Republic’s Land Survey Office, in coopera-
tion with the Military Geographic and Hydrometeorological
Office, periodically presents orthophotos of the whole Czech
territory [12]. For this paper, data spanning the whole ter-
ritory totaling 30,228 patches with around 10,000×15,000
pixels each summing up to a total of more than 4E12 pixels
was downloaded. The disk size of the jpeg2000 compressed
data is �1500GB. A pixel in this data is normalized to
a spatial extent of 12.5×12.5cm. Figure 5 gives an exam-
ple of a used orthophoto.

To prepare the data for subsequent analysis tasks, a split
into three sets, training, validation, and test, is conducted
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Fig. 5 An example of an orthophoto (Z1_1M_N49d29m00s_E017d16
m00s) obtained from [12]

Fig. 6 Separation of the data for our training splits. We show the local-
ity of the trajectories in the Czech Republic, with trajectories visualized
by their bounding box and background orthophoto obtained from [12]

based on the geolocation of bounding boxes of the trajec-
tories depicted in Fig. 6.

This avoids information leakage between them as there
is no risk of predicting results on an image that was seen
before in the training process. The separation point is cho-
sen at the coordinates N50.600 E16.170. The three resulting
sets have an approximately equal class distribution as visu-
alized in Fig. 7.

Fig. 7 Visualization of the training splits in logarithmic scale for the number of occurrences for each label. All classes are available in the train
split, but we observe not all classes during validation and testing

5 Experiment

To prove the validity of our approach, we conducted an
experiment to predict road features based on trajectories
and their visual surroundings. The experiment is performed
in two steps: First, trajectory segments are contextualized
in visual representations before a classification algorithm is
trained to predict the road features.

5.1 Trajectory Contextualization

Since the trajectories of the VSD are more or less uniformly
sampled in time, as described by the authors [26], we use
all sampled points as support points p

j
i for the respective

trajectory tj For the trajectory embeddings, we uniformly
sampled points on scanlines orthogonal to the connection
of the support point pi to the following support point
pi+1. The length of the scanline was denoted to be 40 m in
the image coordinate reference system, and a total of 256
points were sampled with an equal distance sampling on
this line. This resulted in separate image stripes of width
256 pixels and varying lengths lj for each trajectory tj .
These were tiled in 256 �256 pixel patches with a stride
size s of 16. Trajectories tj with less than 256 support
points and the last n = countŒpj

i � mod s support points for
each trajectory were discarded.

This resulted in a total of 476,942 image patches. As
explained before, data division for training, validation, and
testing follows a regional separation of the trajectories. The
size of the three sets of training, validation and test are
294,337, 73,161, and 94,340 patches, respectively.

5.2 Classification Task

To assess the applicability of trajectory-derived data, we
employed a CNN trained on 256×256 pixel orthophoto
patches. We utilized the ConvNeXt architecture [16]
for multi-label classification tasks, specifically targeting
way_type, way_surface, and way_maxspeed categories.
Each category was independently classified using a ded-
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icated classifier built on CNN-extracted features. Label
details for these categories are provided in Table 1.

Implementation Details: We train for 26 epochs the pre-
trained ConvNeXt-Base with a learning rate of 1e−4 and
a Cosine Decay schedule with a warm-up of 1 epoch. As
a loss, we use the Asymmetric Loss for Multi-Label Clas-
sification as proposed by [23]. This loss is especially suited
for skewed data distributions in multi-label settings. Ad-
ditionally, we augment the images with random rotation,
horizontal flipping, color jitter, blurring, sharpening, grid
dropout, and coarse dropout.

6 Evaluation and Results

With the proposed experiment, we achieve good results in
giving a visual interpretability of trajectory data as shown
in Fig. 8. Not only the environment of a trajectory can be
visually examined with this representation, but also the dis-
tortion in commonly recognizable image parts of a defined

Fig. 8 Orthophoto with plotted trajectory points on the street and cor-
responding visual embedding generated with our proposed approach.
Dark markers denote turns, and the light line gives an example of
a scanline and the respective visualization in the embedding

shape and size like cars, trees, or crossings allows addi-
tional statements about the velocity traveled (when support
points are sampled on an equal time approach). Issues with
our proposed data generation approach especially occur in
more densely populated areas. There, two factors result in
distortions of the image: On the one hand, the multiple
sharp turns result in the overlap of an adjacent scanline
and, therefore, unnecessarily distort the image by repeating
patterns, as visualized in Fig. 9. On the other hand, the addi-
tional distortion of GPS signals is resulting in non-smooth
trajectories.

For an evaluation of the prediction of road features, clas-
sification results are presented in Table 2. The ZeroR classi-
fier, a baseline model, predicts solely based on class distri-
bution (“stratified” approach), essentially rendering its pre-
dictions as random, guided by class frequencies [20]. In
contrast, our CNN model exploits the intrinsic image fea-
tures, outperforming the ZeroR baseline. This delineates
the effectiveness of CNNs in extracting and utilizing com-
plex patterns within images for classification, affirming the
model’s capability to surpass mere probabilistic guessing,
as demonstrated by the comparative results.

While the classifications of way types and speed limits
show promising results, it is obvious that the strong skew-
ness of labels for the way surface prediction tasks (com-
pare Fig. 7) causes difficulties for the classifier, resulting in
worse results. However, this also expresses the complexity
of the posed classification tasks itself.

Fig. 9 Possible distortion due to sharp trajectory turns; points single
raster areas are sampled multiple times (compare light rectangle in the
top and crossing scanlines in the bottom)
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Tab. 2 Classification results of
our CNN approach on multiple
tasks compared to the ZeroR
random classifier

Approach Way Type Way Surface Speed Limit

Prec. Rec. Prec. Rec. Prec. Rec.

Validation

ZeroR 0.03 0.08 0.24 0.25 0.08 0.09

ConvNeXt 0.28 0.18 0.38 0.25 0.23 0.20

Test

ZeroR 0.07 0.07 0.25 0.25 0.08 0.08

ConvNeXt 0.27 0.30 0.25 0.25 0.28 0.25

7 Conclusion and Outlook

With our chase-cam-based selection of trajectory-surround-
ing raster pixels, we propose a novel way of dealing with
multi-modal input data for trajectory analysis.

The visual evaluation showed the representative and in-
terpretable structure of these embeddings. Technical feasi-
bility of our approach as a basis for downstream trajectory
analysis by classifying trajectory parts was given with the
results obtained in road feature classification based on the
Czech vehicle speed dataset [26] and orthophotos of this
region [12]. While the general approach worked well, we
still propose the following points for future development:

� Reducing artifacts and improving on the exactness of the
representation by improving on raster point selection, re-
moving outliers, and rising curve smoothness.

� Improve the database access patterns for single raster el-
ements during sampling by applying more advanced data
structures, including randomized data structures as pro-
posed by [28] to improve access performance.

� Adapt the approach to additional data types, such as vec-
tor maps, and extend it to the 3D case where we would
not have a scanline but a 2D scanplane.

With this work, we improve the general analyzability of
trajectories so that more advanced analyses, like automatic
semantic descriptions, become possible. This improves data
usability and utilization and can help to expand the remote
sensing domain, which has so far been based mainly on
image data, to include the additional modality of vector
data.
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