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Abstract
Personal trajectory data, increasingly acquired by more and more
GNSS-enabled devices, is currently underutilized as privacy con-
cerns prohibit its comprehensive excavation to improve reaction
and planning opportunities for communities and individuals. How-
ever, due to their distinctive data structure, existing data anonymiza-
tion methods are difficult to apply directly to trajectories. Therefore,
inspired by recent probabilistic representations of geographic in-
formation, we present TraBiMaps, a randomized data structure for
trajectories based on Bloom Filters using cryptographic hash func-
tions that can efficiently store and evaluate rasterized trajectories
with a high level of individual privacy. We further provide a prelim-
inary privacy analysis of TraBiMap and pose additional research
questions in this field.
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1 Introduction
In recent years, individual trajectory tracking data has increased
massively. Most handheld devices (like mobile phones) and ve-
hicles can track movements using GNSS-enabled services more
accurately than ever before, offering great potential for thorough
mobility analysis. A common research goal here is to obtain under-
lyingmovement patterns applicable for futuremovement prediction
[11, 15], benefiting various fields like emergency response, traffic
routing, market research, city planning, and more [15].
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However, tracking personal trajectories raises privacy concerns,
as location data enables inference on, e.g., religious or sexual pref-
erences, habits, and social customs [1, 15]. Various studies showed
that linkage and re-identification attacks are often successful in
trajectory databases [6, 11]. Meanwhile, several regions worldwide
have already set up regulations to ensure data privacy, e.g., the
European Union’s General Data Protection Regulation1. Therefore,
trajectory data anonymization is essential to prevent threats of
privacy violations and avoid potential legal risks [9].

In general, trajectory data is often stored in databases where each
record is denoted a trajectory identity, a timestamp, and a location.
Due to their high dimension, sparseness, and sequential character,
privacy metrics like 𝑘-anonymity [19], and 𝜖-differential privacy
[7] generally used for tabular-like data types are often not directly
applicable to trajectories. Existing privacy mechanisms either allow
simple adversarial attacks [9, 15] or reduce the utility of anonymized
trajectories [15]. Consequently, only limited datasets are published
regarding individual mobility trajectories, whereas datasets pub-
lished are not representative, and utilization after anonymization
is low. At the same time, data structures based on randomized
representations of geo-data were presented, which use hash encod-
ings and binary representation schemas featuring Bloom Filters
for collective storage of complex geospatial data objects, e.g., Glo-
BiMaps [22], which allow for high lossy data compression capability
with low error rates.

With this paper, we identify the potential of hash-based data rep-
resentation for privacy-preserving trajectory analysis and propose
further research in this field: We encourage the investigation of
cryptographic Bloom Filter representations for storing summarized
trajectory information and propose a new data representation for
trajectories: the TraBiMap. Further, we explain how TraBiMap en-
sures privacy and anonymity for publishing and processing trajec-
tory data sets with high utility in analysis tasks. To our knowledge,
this poses a new research direction with high potential. It combines
the principles of 𝑘-anonymity, 𝑙-diversity, and differential privacy
with storing spatial data in randomized representations.

2 Preliminaries
This section provides fundamental background and concepts to
facilitate the following elaboration and analysis of TraBiMap.

2.1 General Privacy Concepts
Datasets usually contain different attributes from a privacy perspec-
tive. So-called quasi-identifiers denote attributes that alone cannot
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uniquely identify an individual in a dataset. Still, a combination of
quasi-identifiers can be used to deanonymize records [1]. In com-
parison, sensitive attributes are data attributes that must be kept
confidential and thus need to be anonymized by privacy-preserving
algorithm [1].

The most basic privacy measure is k-anonymity [19], which tells
an individual’s quasi-identifiers have to be equivalent to at least
𝑘 − 1 other individuals with which they form an equivalence class.
Another concept is 𝑙-diversity, which extends the 𝑘-anonymity by
measuring how diverse the values of one sensitive attribute are
within one equivalence class to avoid the problem that no matter
how high the 𝑘 is, individuals may still be disclosed with additional
information [14]. Furthermore, t-closeness is introduced as another
privacy dimension and describes the concept of ensuring that the
distance between the distributions of sensitive attributes in an
equivalence class and the complete database is low [13].

In our case, we focus on privacy and anonymity of trajectories.
The standard 𝑘-anonymity is not directly applicable here as their se-
quentiality property allow exploitation with additional information
[15]. There is not a fixed set of quasi-identifiers and sensitive infor-
mation, but rather all items, in our case trajectory points, are both,
as it depends on the attacker’s knowledge of which trajectory point
is what. Therefore, Terrovitis and Mamoulis define an additional
𝑘𝑚-anonymity, where𝑚 is an attacker’s maximum knowledge (the
maximum number of deanonymized trajectory points) [20]. An-
other method is (𝑘, 𝛿)-anonymity where spatial cylinder-like struc-
tures describe trajectories and thereby anonymize them through
this broader spatial extent [1]. The analysis above reveals two addi-
tional requirements for anonymizing trajectories: both the number
of regions a user visits (ubiquity) and the number of users in each
region (congestion) cannot be too few to allow anonymization[2].

Another way to anonymize the data in a database is the approach
of differential privacy where an artificial noise is added probabilis-
tically (normally in a Laplacian distribution or with Randomized
Responses) [7].

2.2 Privacy Mechanisms for Trajectories
Various privacy mechanisms are described in the literature to apply
the above privacy dimensions to trajectories. Interactive privacy
mechanisms allow the user to query the dataset of the owner and
results to those queries are crafted to protect privacy [7]. In compar-
ison, non-interactive approaches sanitize, respectively anonymize
the dataset before the release, and there is no interaction with the
owner necessary after publishing [7]. Furthermore, we differen-
tiate between the offline mode of protecting existing data, which
was captured upfront and is provided for analysis and online mode,
where real-time data of moving objects is analyzed in [15].

The most basic concept to avoid deanonymization in databases is
generalization, e.g., group instances of one quasi-identifier together
to make them less explicit [18]. For trajectories, we can conduct
this idea by increasing the spatial granularity, e.g. by assigning an
area instead of a point for each trajectory step [1]. An approach to
solve the consecutive information loss due to generalization is the
hierarchy-free multidimensional approach [12]. However, trying to
generalize trajectories always results in the curse of dimensional-
ity, as every coordinate of each trajectory point may be seen as a
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Figure 1: Visualization of the GloBiMaps: The input object 𝑜
is discretized, hashed, and stored in a Bloom Filter.

quasi-identifier for an individual [2, 11]. Furthermore, the cardinal-
ity of locations is also very high [11], which makes selecting the
generalization degree hard to ensure total anonymity [1].

Another approach is supression, which means deleting all infor-
mation, which reduce anonymity [18]. For trajectory databases, this
would degrade all trajectories outside anonymity sets, which means
outliers. An alternative is point suppression, which is the same as
a maximum space generalization: the respective suppressed point
can be anywhere in space afterward, so it holds no information
anymore [2]. Furthermore, condensation [3] perturbs the data in a
way that preserves inter-attribute correlation to generate new sam-
ples but loses the original dataset in the process [1]. Similarly, space
translation achieve 𝑘-anonymity by using a trajectory distance func-
tion to cluster trajectories and afterward sample an anonymized
set of trajectories from these clusters [1].

Further, differential privacy was applied to trajectories [10, 17]
and is said to be “the strongest unconditional privacy protection
technology currently known” [8]. Issues are that often semantically
non-meaningful trajectory points are sampled, so it is difficult to
obtain useful mobility patterns for downstream tasks, and this
allows for easier identification of artificially sampled points and,
therefore, de-anonymization.

2.3 Bloom Filters and GloBiMaps
One of the most representative probabilistic data structures are
Bloom Filters (BFs), which are used to store sets [4]. A BF in its
simplest form consists of a binary array with𝑚 slots and a set of
𝑘 pairwise independent hash functions mapping from the original
domain to the range (0,𝑚 − 1). An empty filter is all zero. For
inserting an element into this set description (filter), the element is
hashed with all the hash functions, and all slots of the BF denoted
by at least one hash value are set to 1. To check whether an element
is stored in this BF, again, it is hashed, and if all slots denoted by the
hash values are 1, it is returned true [21]. An important property
of BFs is that there are no false negatives. If a query denotes an
item to be stored, it is definitely in the stored set.

To take advantage of BF for trajectory representation, GloBiMaps
was proposed as a probabilistic data structure for rasterized geo-
metric objects [22]. The main idea is to give all raster cells unique
identifiers and store the identifiers of cells covered by a spatially
extended object as a set in a BF. The approach is visualized in Fig-
ure 1. Especially for sparse geometric objects, it holds an advantage
as short BFs can represent complex data with a low false positive
rate in limited space [22]. So far, GloBiMaps for trajectory data was
limited to the spatial domain only and ignored the time domain
[21, 22].

An alternative approach for using BFs with mobility data are
Spatial BFs to encode spatial information for location-based services
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in a specific variant of the BF holding the location information in
a set-based format [5, 16]. They explain the privacy-preserving
property of this approach in two proposed protocols. However, this
is not directly applicable to trajectories.

3 Proposed Methodology
The following presents opportunities for trajectory anonymiza-
tion by using probabilistic representations, evaluates them on their
privacy contribution qualitatively.

3.1 Representing Trajectories with Bloom
Filters: TraBiMap

The most straightforward representation of trajectories in the BF-
based GloBiMaps representation is to just encode their rasterized
spatial footprint as shown in Figure 1 and explained byWerner [22].
While this method might be beneficial to answer queries like “Has
any trajectory touched a specific rasterized cell?” it does not allow for
the differentiation of single trajectories. Such questions like, “How
high is the probability of an individual passing by cell A and cell B?”
cannot be answered. The second question is especially interesting in
understanding crowdmovements and can help with future planning
and adaption to often traveled ways, which might be beneficial in
city planning and, e.g., market analysis in a mall. Additionally, this
is not an anonymized or privacy-preserving storage format, as the
normally used hash functions for BF representations like Murmur
hash allow for an inverse of the hashing operation. Therefore, they
may allow the decrypting of single trajectories from the global
GloBiMaps Footprint of all trajectories.

To improve a BF is assigned to every raster cell, which serves
as a set representation of all trajectories 𝑇𝑖 passing through the
respective cell. This allows to compare the binary BF representa-
tions of different cells to detect whether similar trajectories passed
by these cells. BF vectors being closer with regards to, e.g., Ham-
ming distance, probably have had similar trajectories passing by.
This enables analysis of the second posed question above but still
falls short in describing actual movement but rather only location
patterns (“Have similar people been in cell A and cell B?” ).

To make movements analyzable, we propose a new method to
represent trajectories with BFs, which we call Trajectory Binary
Map (TraBiMap) and visualize in Figure 2. Compared to previous
approaches, we do not use the rasterized cells as a basis for the
probabilistic representation but instead, the crossed cell boundaries
(red arrows in Figure 2). This represents a movement instead of
a location only. To do so, we define a global raster covering all
trajectories with a raster size 𝑟 , a width of𝑤 , and height ofℎ cells (in
Figure 2𝑤 = 6 andℎ = 4). Given a trajectory dataset𝐷 = {𝑇1, ...,𝑇𝑛}
with 𝑛 trajectories, we can then determine all crossings 𝑐 of cell
boundaries per trajectory 𝐶𝑇𝑖 = {𝑐1, ..., 𝑐 𝑗 }. For our representation,
we then denote a separate short Bloom Filter 𝐵𝐹𝑐𝑎𝑏 of length𝑚 to
every cell crossing 𝑐𝑎𝑏 between raster cells 𝑎 and 𝑏 ((2, 3) and (2, 4)
in Figure 2). We then insert all trajectory IDs 𝑇𝑖 into each 𝐵𝐹𝑐𝑎𝑏
for which this cell crossing 𝑐𝑎𝑏 is in 𝐶𝑇𝑖 . Inserting thereby works
as in standard BFs: For each trajectory in 𝐷 , the trajectory ID 𝑇𝑖 is
hashed by 𝑘 hash functions, and results are mapped to the position
set [0,𝑚 − 1). To ensure privacy preservation, we thereby only use
cryptographic hashes. In the next step, all BFs for cell crossings in
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Figure 2: Visualization of the proposed new TraBiMap repre-
sentation of rasterized trajectories by their cell boundaries,
enabling the anonymized representation of whole trajectory
datasets in a set of Bloom Filters

𝐶𝑇𝑖 are set to one at these respective positions. After all trajectories
are inserted, we end up with (𝑤 − 1) ∗ℎ +𝑤 ∗ (ℎ − 1) BFs for all 𝑐𝑎𝑏 .

By construction, these binary BF vectors are more similar if the
same individuals cross the respective cell boundaries. Therefore,
the similarity of crowds that crossed certain cell boundaries may
be analyzed by the similarity between these binary vectors. For
the similarity, binary vector distance measures can be used. In
the future, it needs to be analyzed which measures work best and
whether the proposed approach preserves enough utility of the
anonymized dataset.

3.2 Privacy Analysis of TraBiMap
In the following, the approach is evaluated against the privacy
principles described in Section 2.1. Our approach does not need the
dataset to be highly ubiquitous, as single users may not be identified
in the proposed representation due to cryptographic encoding in
BFs. Meanwhile, high congestion is necessary for sufficient diversity
in the BFs, which ensures privacy. If just one person crosses a cell
border, their unique encoding is leaked and can be tracked through
the dataset, at least on a probabilistically.

The standard k-anonymity is thereby not fully applicable to our
approach, as we do not have public individual quasi-identifiers but
instead store only the cryptographically encrypted summarized
information of all individuals passing a certain cell border. In this
case, a single BF can only be seen as a quasi-identifier for the exact
subset of all individuals who have passed this border. However, due
to construction, even two exactly similar BFs can denote different
sets of people with a defined probability due to overlaps in hash
values. Therefore, our approach ensures individual privacy as only
aggregated information is presented, which cannot be directly de-
coded into individuals as long as a minimum level of k trajectories
goes through every cell boundary. This is somehow similar to the
principle of differential privacy. The BFs add a random noise to
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the distribution. Still, the proposed approach has no issues with
incoherent points, as the BF does not allow for the explicit track-
ing of single trajectories. Furthermore, in theory, this 𝑘-anonymity
may also be ensured for a smaller amount of trajectories per cell
boundary based on the random representation of values with high
likelihood. The sets of people being stored in a BF can then be seen
as equivalence classes for l-diversity. Conclusively, it needs to be
ensured that BF vectors do not allow for adversarial attacks. With
enforced variety amongst the BFs encoding of one trajectory at
different locations, this individual’s other movements cannot be
revealed. Approaches are the right filter size to allow for value
overlaps in the BF or adding random noise to the BFs. Alternatively,
reducing the overall variety of all BFs such that there are too many
potential points an individual might have been to prevent revealing
this individual’s actual movements. This also increases t-closeness as
more similar filters may occur with different actual initial trajectory
IDs being mapped into them. This can be evaluated by checking
the spatial distributions of locations with similar BFs.

The proposed representation further still allows for known tra-
jectory IDs and used hash functions to checkwhether this trajectory
passed a certain cell boundary. Therefore, it needs to be ensured
to use private hash functions or trajectory IDs, which only the
individual or a trusted data publisher knows.

4 Conclusion and Open Research Questions
Our proposed TraBiMap representation allows for an anonymized
storage of trajectory datasets which theoretically still allow for
a crowd movement analysis. However, for actual usage of this
approach, additional research questions have to be answered:

(1) What is the best way to represent trajectories with random-
ized data structures?

(2) How to choose the right parameters for rasterization, BF
sizes, and the number of hash functions for the proposed
TraBiMap approach?

(3) How to determine the utility of the data anonymized with
randomized data structures?

(4) How do these approaches anonymize real-world datasets?
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